MIT线性代数笔记-第13讲-复习一

13.复习一

  1. 向量 u , v , w u , v , w u,v,w属于 R 7 R^7 R7,那么它们的所有线性组合能构成维数为几的向量空间?

    A n s Ans Ans 1 , 2 1 , 2 1,2 3 3 3

  2. 已知一个 5 ∗ 3 5 * 3 53的行阶梯形式矩阵 U U U的秩为 3 3 3

    (1)矩阵 U U U的零空间是什么

    (2)已知矩阵 B = [ U 2 U ] B = \begin{bmatrix} U \\ 2U\end{bmatrix} B=[U2U],那么这个矩阵的秩是多少,它的阶梯形式是什么样的

    (3)求矩阵 C = [ U U U O ] C = \begin{bmatrix} U & U \\ U & O \end{bmatrix} C=[UUUO]的行最简形式

    (4)求 d i m ( N ( C T ) ) dim(N(C^T)) dim(N(CT))

    A n s Ans Ans:(1) U U U n = r n = r n=r,所以 U U U无自由列,零空间只有 0 ⃗ \vec{0} 0

    ​    (2)矩阵 B B B的各列仍然线性无关,因而它的阶梯形式为 [ U O ] \begin{bmatrix} U \\ O \end{bmatrix} [UO]

    ​    (3)第二行的 U U U O O O无关,因而各列仍然无关, C C C的秩为 6 6 6,又 C C C的行数与列数一致,因而行最简形式为 I I I

    ​    (4) d i m ( N ( C T ) ) = m − r = 10 − 6 = 4 dim(N(C^T)) = m - r = 10 - 6 = 4 dim(N(CT))=mr=106=4

  3. 已知 A x ⃗ = [ 2 4 2 ] A \vec{x} = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix} Ax = 242 的通解为 x ⃗ = [ 2 0 0 ] + c [ 1 1 0 ] + d [ 0 0 1 ] \vec{x} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} + c \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + d \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} x = 200 +c 110 +d 001

    (1)求 A A A行空间的维数

    (2)当 b ⃗ \vec{b} b 等于什么时 A x ⃗ = b ⃗ A \vec{x} = \vec{b} Ax =b 有解

    A n s Ans Ans:(1)由题意知 A A A列数为 3 3 3且零空间基的元素数为 2 2 2,即 n − r = 2 n - r = 2 nr=2,所以 A A A的行空间维数为 r = 1 r = 1 r=1

    ​    (2)由题意知 A [ 2 0 0 ] = [ 2 4 2 ] , A [ 1 1 0 ] = [ 0 0 0 ] , A [ 0 0 1 ] = [ 0 0 0 ] A \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix} , A \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} , A \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} A 200 = 242 ,A 110 = 000 ,A 001 = 000

    ​     因而 A = [ 1 − 1 0 2 − 2 0 1 − 1 0 ] A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & -2 & 0 \\ 1 & -1 & 0 \end{bmatrix} A= 121121000

    ​     又当 b ⃗ \vec{b} b 属于 A A A的列空间时有解

    ​     所以 b ⃗ = k [ 1 2 1 ] ( k ∈ R ) \vec{b} = k \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} (k \in R) b =k 121 (kR)时有解

  4. 已知矩阵 B = [ 1 1 0 0 1 0 1 0 1 ] [ 1 0 − 1 2 0 1 1 − 1 0 0 0 0 ] B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1\\ 0 & 0 & 0 & 0 \end{bmatrix} B= 101110001 100010110210

    (1)求 B B B零空间的一组基

    (2)求解 B x ⃗ = [ 1 0 1 ] B \vec{x} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} Bx = 101

    A n s Ans Ans:(1)相乘的左侧矩阵各列无关,所以左侧矩阵只有乘上 0 ⃗ \vec{0} 0 才能得到 0 ⃗ \vec{0} 0 ,因而右侧矩阵与零空间中的任意向量乘积都 为 0 ⃗ \vec{0} 0 ,即求右侧矩阵零空间的一组基,可得一组基为 { [ 1 − 1 1 0 ] , [ − 2 1 0 1 ] } \Bigg\{ \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} , \begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix}\Bigg\} { 1110 , 2101 }

    ​    (2)由左侧矩阵和右侧矩阵第一列得到 B B B的第一列为 [ 1 0 1 ] \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} 101 ,因而一个特解为 [ 1 0 0 0 ] \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} 1000 ,所以通解为 x ⃗ = [ 1 0 0 0 ] + c \vec{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + c x = 1000 +c [ 1 − 1 1 0 ] + d [ − 2 1 0 1 ] \qquad \qquad \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + d \begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix} 1110 +d 2101

  5. 证明 v ⃗ = [ 1 2 3 ] \vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} v = 123 不可能同时存在于同一矩阵 A A A的行空间和零空间

    A n s Ans Ans:令 v ⃗ \vec{v} v 属于 A A A的零空间,则 A A A的任意一行乘上 v ⃗ \vec{v} v 都得到 0 0 0,因而 v ⃗ \vec{v} v A A A的任意一行都垂直,而 A A A行空间中的向量不可 能与 A A A的任意一行都垂直

  6. 判断题

    • 某方阵的零空间只有 0 ⃗ \vec{0} 0 ,那么它的转置的零空间也只有 0 ⃗ \vec{0} 0
    • 所有 5 ∗ 5 5 * 5 55可逆矩阵的集合是一 矩阵空间
    • 所有 5 ∗ 5 5 * 5 55奇异矩阵的集合是一个矩阵空间
    • 已知矩阵 B B B的平方等于 O O O,那么 B = O B = O B=O
    • 一个有 n n n个未知数 n n n个方程的方程组 A x ⃗ = b ⃗ A \vec{x} = \vec{b} Ax =b A A A各列线性无关时一定有解
    • 矩阵 A , B A , B A,B的四个基本子空间相同, A A A一定是 B B B的倍数

    A n s Ans Ans T T T

    ​     F ( 无零空间 ) F(无零空间) F(无零空间)

    ​     F ( [ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] + [ 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 ] = [ 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 ] ) F(\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}) F( 1000000000000000000000000 + 0000001000001000001000001 = 1000001000001000001000001 )

    ​     F ( [ 0 1 0 0 ] 2 = O ) F(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^2 = O) F([0010]2=O)

    ​     T ( 方阵且各列线性无关,所以 A 满秩,一定有解 ) T(方阵且各列线性无关,所以A满秩,一定有解) T(方阵且各列线性无关,所以A满秩,一定有解)

    ​     F ( 随便找两个不同的各列无关的方阵即可 ) F(随便找两个不同的各列无关的方阵即可) F(随便找两个不同的各列无关的方阵即可)


打赏

制作不易,若有帮助,欢迎打赏!
赞赏码

支付宝付款码

  • 24
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寒蜩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值