行列式公式和代数余子式

本文介绍了求解行列式的两种方法,包括2*2矩阵的简化公式以及通过代数余子式表示的方法。对于2*2矩阵,行列式求解的关键是化简为对角矩阵;对于3*3矩阵,通过分析非零项的规律得出一般公式。同时,文章讲解了代数余子式Cij的定义,即(-1)^{i+j}乘以去掉i行j列后的n-1阶矩阵的行列式,用以表示原行列式。
摘要由CSDN通过智能技术生成

前一篇介绍了行列式(determinant)的10个性质,且简单阐述了如何用消元法求行列式。今天简单介绍求解行列式的2个一般公式,先看第一个公式,以最简单的2*2矩阵为例,对行列式的求法如下:

整个求解思想就是尽量将矩阵化为对角矩阵,每次取一行,逐渐化简矩阵,在化简过程中,有很多矩阵出现零行或零列,行列式变为0,我们用上述方法对3*3矩阵计算行列式,去掉那些行列式为0的项,得到

从上面的两个例子我们可看出在化简过程中行列式不为0的那些项有一定的特点:它们每行及每列上均有一个元素,因为如果某行或某列上没有元素,就会得到全0,且被保留下的这些行列式非零项的个数也是有规律的,以3*3矩阵为例,第一行有3种可能性,第二行有2种可能性,因为第2行的元素要避开第一行已确定

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值