前一篇介绍了行列式(determinant)的10个性质,且简单阐述了如何用消元法求行列式。今天简单介绍求解行列式的2个一般公式,先看第一个公式,以最简单的2*2矩阵为例,对行列式的求法如下:
整个求解思想就是尽量将矩阵化为对角矩阵,每次取一行,逐渐化简矩阵,在化简过程中,有很多矩阵出现零行或零列,行列式变为0,我们用上述方法对3*3矩阵计算行列式,去掉那些行列式为0的项,得到
从上面的两个例子我们可看出在化简过程中行列式不为0的那些项有一定的特点:它们每行及每列上均有一个元素,因为如果某行或某列上没有元素,就会得到全0,且被保留下的这些行列式非零项的个数也是有规律的,以3*3矩阵为例,第一行有3种可能性,第二行有2种可能性,因为第2行的元素要避开第一行已确定