【扩散模型】2、DDPM | 去噪扩散概率模型开山之作

在这里插入图片描述

论文:Denoising Diffusion Probabilistic Models

代码:https://github.com/hojonathanho/diffusion

stable diffusion 代码实现:https://github.com/CompVis/stable-diffusion/blob/main/ldm/models/diffusion/ddpm.py

出处:伯克利

时间:2020.06

数学基础知识

在这里插入图片描述
在这里插入图片描述

假设均值为 0,方差为 1 的高斯分布,则对应的噪声示例如下,就是在 0 附近分布的一些点

在这里插入图片描述

一、背景

扩散模型是一种用于描述系统中扩散过程的数学模型。扩散过程包括传播、渗透、传输等等。例如,在化学中,扩散模型可以用来描述分子之间的扩散运动。在社会学中,扩散模型可以用来描述信息、想法或行为在人群之间的传播。在物理学中气体分子从高浓度区域扩散到低浓度区域,这与由于噪声的干扰而导致的信息丢失是相似的。所以通过引入噪声,然后尝试通过去噪来生成图像。在一段时间内通过多次迭代,模型每次在给定一些噪声输入的情况下学习生成新图像。

即图像生成任务就是模拟分子扩散的过程,给图像中逐步加入噪声,最终变成一个看不出原本图像分布的噪声分布,然后通过逆向预测噪声来去噪的过程来进行图像生成。

在 DDPM 之前呢,其实在 2015 年就有利用扩散模型的思想来做图像生成的尝试了,但没有很好的效果

一般的思路还是两个过程,前向扩散和反向去噪:

  • 前向扩散:通过 t 次(t 可能很多,1000 次)的噪声添加,每次添加很小的随机噪声,逐步将输入图像加噪成一个正态分布,图片就变成了一个各向同性噪声
  • 反向去噪:通过 t 次反向预测进行噪声去除,反向去噪的过程一般使用类似 U-Net 的结构,每次 t 到 t-1 状态的预测都是使用 U-Net encoder 先把图像压缩,decoder 再把图像恢复,U-Net 的输出是预测的图片,注意这里是图片,所以约是比较复杂的(U-Net 的参数是共享的)

DDPM 做了什么改进才把扩散模型的效果拉起来了呢:U-Net 不预测图片了,只预测本次添加的噪声

DDPM 是如何改的:

  • U-Net 的输入不只是 Xt 时刻的图片了,还有一个 time embedding(可以看做类似 position embedding 的东西),也是一个向量,可以直接加,也可以直接拼接到输入图片特征上
  • 为什么要引入 time embedding :反向扩展过程中,刚开始的时候希望 U-Net 能够先生成一些大概轮廓,粗糙的特征,不需要很清晰,随着扩展模型一点点往前走,到后面的时候希望模型能学习一些细节的特征。但 U-Net 模型是共享参数的,所以需要 time embedding 来提醒模型现在走到哪一步了,现在这个输出是要粗糙还是细致等等,所以 time embedding 还是很有用的
  • loss:既然预测的是噪声,所以 loss 就是已知的噪声和预测的噪声的差值,而且前向过程添加的噪声是已知的,预测的噪声是 U-Net 的输出
  • DDPM 还有一个贡献,因为一般如果要预测一个正态分布呢,只要学习均值和方差就可以了,其实进一步,只要预测均值就可以了,方差使用一个常数就能达到很好的效果,方差不用学了,再次降低了难度。DPPM 工作的很好了,能使用扩散模型来生成很好的图片了。

DDPM 是很多扩散模型的基础,其通过前向扩散和逆向去噪来实现对噪声的估计,从而将受噪声污染的图像复原。

重参数化:

  • 在高斯分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) 上采样是一个随机过程,不能进行反向传播
  • 所以可以通过重参数化来解决,先从标准正态分布 ϵ \epsilon ϵ ~ N ( 0 , 1 ) N(0,1) N(0,1) 上采样,然后乘以标准差,加上均值即可,也就是 σ × ϵ + μ \sigma \times \epsilon + \mu σ×ϵ+μ,将随机性转移到 ϵ \epsilon ϵ

二、DDPM 主要过程

在这里插入图片描述

2.1 前向扩散过程

在这里插入图片描述
在这里插入图片描述

前向扩散的实际操作就是给定一张图 x 0 x_0 x0,图片是有三个通道 RGB 的,都是 [0,255] 之间的数值,首先要将像素值归一化映射到 [-1,1] 之间,然后通过在标准正态分布 N(0,1) 中随机采样生成一张同样大小的噪声图片,噪声也是 3 通道的。然后将噪声和图片的对应位置上进行加权求和,加权求和的方式如下:
β × ϵ + 1 − β × x \sqrt \beta \times \epsilon+\sqrt{1-\beta}\times x β ×ϵ+1β ×x

  • x x x:输入图像
  • ϵ ∼ N ( 0 , 1 ) \epsilon \sim N(0, 1) ϵN(0,1):是添加的高斯噪声
  • β \beta β:是一个权重参数,且 ( β ) 2 + ( 1 − β ) 2 = 1 (\sqrt \beta)^2 + (\sqrt {1-\beta})^2=1 (β )2+(1β )2=1 永远成立,在前向扩展的过程中, β \beta β 也会越来越大,刚开始的 β \beta β 是比较小的,随着 β \beta β 的增大,噪声所占的比例会越来越大,可以大致看成从 0 到 1 逐步递增。如下图所示,所以可以用一个公式来表达前一时刻和后一时刻的关系。 x t = β t × ϵ t + 1 − β t × x t − 1 x_t=\sqrt {\beta_t} \times \epsilon_t + \sqrt {1-{\beta_t}} \times x_{t-1} xt=βt ×ϵt+1βt ×xt1

在这里插入图片描述

在这里插入图片描述

然后引入一个变量 α t = 1 − β t \alpha_t=1-\beta_t αt=1βt,所以 x t = 1 − α t   ϵ t + α t   x t − 1 x_t= \sqrt{1-\alpha_t} \ \epsilon_{t}+\sqrt{\alpha_t}\ x_{t-1} xt=1αt  ϵt+αt  xt1,从这个公式中可以看出,可以从 x 0 x_0 x0 经过 t 次噪声添加,得到 x T x_T xT 的图像

所以能不能直接简化这个过程呢,直接从 x 0 x_0 x0 x T x_T xT,经过一系列证明后,结论是可以!

两个正态分布叠加后,仍然是正态分布,且有如下公式:

在这里插入图片描述

然后经过一系列推断和重参数化技巧,根据上面的公式的思路可以得到下面的公式,也就是可以通过一步过程来从 x 0 x_0 x0 得到 x t x_t xt

x t = α ‾ t   x 0 + 1 − α ‾ t   ϵ x_t=\sqrt{\overline{\alpha}_t}\ x_0 + \sqrt{1-\overline{\alpha}_t} \ \epsilon xt=αt  x0+1αt  ϵ

  • α ‾ t = Π i = 1 t   α i \overline{\alpha}_t=\Pi_{i=1}^t\ \alpha_i αt=Πi=1t αi,表示累乘,就是有多少次引入噪声的过程,就有多少个值乘到一起
  • ϵ ∼ N ( 0 , 1 ) \epsilon \sim N(0, 1) ϵN(0,1)
  • 上面的公式可以直接由输入图像 x 0 x_0 x0 来生成最终的加噪结果

在这里插入图片描述

2.2 逆向去噪过程

逆向去噪的目标是从 x T x_T xT 得到 x 0 x_0 x0

我们已知从 x t − 1 x_{t-1} xt1 x t x_t xt 是添加随机噪声得到的,所以可以看做一个随机过程,所以从 x t x_t xt x t − 1 x_{t-1} xt1 的过程也是一个随机过程,所以可以用贝叶斯公式来解决,也就是在给定 x t x_t xt 的情况下,求前一时刻 x t − 1 x_{t-1} xt1 的概率,这里 P ( x t − 1 ) P(x_{t-1}) P(xt1) 是在 x t − 1 x_{t-1} xt1 时刻的概率,也就是从 x 0 x_0 x0 得到它的概率

在这里插入图片描述

所以都加上 x 0 x_0 x0 作为前提条件,实际上可以忽略,所以基于 x t x_t xt 来求 x t − 1 x_{t-1} xt1 的概率分布的公式如下:

在这里插入图片描述


现在分别求式子中的每一项:

p ( x t ∣ x t − 1 ) p(x_t|x_{t-1}) p(xtxt1):~ N ( α t x t − 1 , 1 − α t ) N(\sqrt{\alpha_t} x_{t-1}, 1-\alpha_t) N(αt xt1,1αt)

注意上上个图中的第一个式子,这里的 ϵ t \epsilon_t ϵt 是服从 (0,1) 分布的高斯噪声,乘以前面的系数 1 − α t \sqrt{1-\alpha_t} 1αt 后,变成服从 N ( 0 , 1 − α t ) N(0, 1-\alpha_t) N(0,1αt) 的分布,然后再加上后面的一项 α t × x t − 1 \sqrt{\alpha_t} \times x_{t-1} αt ×xt1 后,均值就变化了,变成了服从 N ( α t x t − 1 , 1 − α t ) N(\sqrt{\alpha_t} x_{t-1}, 1-\alpha_t) N(αt xt1,1αt) 的分布,这就是给定 x t − 1 x_{t-1} xt1 时刻时,对应 x t x_t xt 时刻的概率分布 p ( x t ∣ x t − 1 ) p(x_t|x_{t-1}) p(xtxt1),是一个正态分布

p ( x t ∣ x 0 ) p(x_t|x_0) p(xtx0):~ N ( α ‾ t   x 0 , 1 − α ‾ t ) N(\sqrt{\overline{\alpha}_t}\ x_0 ,1-\overline{\alpha}_t) N(αt  x0,1αt)

注意上上个图中的第二个式子,,这里的 ϵ \epsilon ϵ 也是服从 (0,1) 分布的高斯噪声,和前面推法一样,最后就变成了服从 N ( α ‾ t   x 0 , 1 − α ‾ t ) N(\sqrt{\overline{\alpha}_t}\ x_0 ,1-\overline{\alpha}_t) N(αt  x0,1αt) 的分布

p ( x t − 1 ∣ x 0 ) p(x_{t-1}|x_0) p(xt1x0):~ N ( α ‾ t − 1   x 0 , 1 − α ‾ t − 1 ) N(\sqrt{\overline{\alpha}_{t-1}}\ x_0 ,1-\overline{\alpha}_{t-1}) N(αt1  x0,1αt1)

使用相同的计算方式来计算


得到了上面三个部分的均值和方差后,就能用正态分布的概率密度函数形式来表示

在这里插入图片描述

然后再将这些密度函数带入贝叶斯公式中:

在这里插入图片描述

目标是求解给定 x t x_t xt 条件下 x t − 1 x_{t-1} xt1 的概率,实际上也是正态分布,所以就需要将上面的式子变换侧灰姑娘 x t − 1 x_{t-1} xt1 的概率密度函数形式

在这里插入图片描述

在这里插入图片描述

所以,最终给定 x t x_t xt 条件下, x t − 1 x_{t-1} xt1 的概率分布如下

在这里插入图片描述

然后就从 x T x_T xT 时刻,不断使用这个关系,得到 x t x_{t} xt x t − 1 x_{t-1} xt1,直到 x 0 x_0 x0 的分布,这里的所有图像都可以看成一个分布

在这里插入图片描述

至此,整个推理过程就结束了,所以需要神经网络来做什么呢:

给定一张随机噪声 x T x_T xT,通过神经网络预测噪声 ϵ \epsilon ϵ,然后根据预测到的噪声就能得到前一时刻图像的概率分布,这个概率分布就是上面图中的 p ( x t − 1 ∣ x t , x 0 ) p(x_{t-1}|x_t,x_0) p(xt1xt,x0),然后用此概率分布进行随机采样,就能得到一张前一时刻的图像,然后再将这个前一时刻的图像使用神经网络预测噪声,不断重复这个预测、采样、预测、采样的过程,就能得到 x 0 x_0 x0

而且这个最开始的图像 x T x_T xT 其实近似于标准正态分布,所以随机采样即可

从 T 时刻像 0 时刻递减的过程中可以看出,前一时刻的图像的正态分布的标准差越来越小,逐渐接近于 0,其实就是上面图中大红色字那部分表示的标准差,也就是说前一时刻的图像分布越来越靠近均值

在这里插入图片描述

2.3 训练和推理

模型的结构:U-Net

模型每次的输入: x t x_t xt 和 time embedding t t t

模型每次的输出:噪声

每次从 t t t 时刻到 t − 1 t-1 t1 时刻的模型 U-Net 的参数都是共享的

模型学习的目标:

不断的逆向去掉噪声,学习的目标就是让每步逆向预测的噪声 ϵ θ ( x t , t ) \epsilon_{\theta}(x_t, t) ϵθ(xt,t) 和每步前向添加的噪声 ϵ \epsilon ϵ 尽可能的相近,前向添加噪声的时候虽然是一次进行的,但每次添加的噪声其实是都有记录的。

损失函数:

在这里插入图片描述

训练的过程:最小化预测的噪声和添加的噪声的差距

  • 第一步:输入原图 x 0 x_0 x0
  • 第二步:生成随机噪声 ϵ \epsilon ϵ 和时间 t t t
  • 第三步:对原图加噪, x t = α ‾ t   x 0 + 1 − α ‾ t   ϵ x_t=\sqrt{\overline{\alpha}_t}\ x_0 + \sqrt{1-\overline{\alpha}_t} \ \epsilon xt=αt  x0+1αt  ϵ,这里 α ‾ t \overline{\alpha}_t αt 表示累乘
  • 第四步:将加噪的图像和时间向量 t 输入神经网络模型,预测噪声 ϵ θ \epsilon_{\theta} ϵθ
  • 第五步:计算 loss 并更新模型

在这里插入图片描述

推理的过程:

  • N ( 0 , 1 ) N(0,1) N(0,1) 中随机生成一个噪声
  • 循环 T 步逐步去噪,就从噪声恢复得到了原图

在这里插入图片描述

  • 7
    点赞
  • 55
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 扩散动力学模型(Diffusion Dynamics Model, DDPM)是一种用于研究扩散过程的数学模型。通常,DDPM 模型用来描述信息、病毒、情绪、偏见等在社会网络中的传播。 DDPM 模型通常使用下列方程来描述扩散过程: 对于网络中的每个节点 i,定义 x_i 为节点 i 的状态(例如,可以为感染、未感染、中立等)。 则有: dx_i/dt = (1 - x_i) * sum(a_ij * x_j) - x_i * sum(b_ij * x_j) 其中,a_ij 和 b_ij 分别表示从节点 j 到节点 i 的影响力(即,节点 i 在节点 j 影响下的变化率)。 通常,a_ij 和 b_ij 都是函数,可以根据节点 i 和 j 的相关属性(例如,年龄、性别、关系等)来计算。 例如,a_ij 可以表示为: a_ij = w_ij * f(x_j) 其中,w_ij 表示节点 j 对节点 i 的影响力,f(x_j) 表示节点 j 的状态对节点 i 的影响。 可以使用数值积分或动态规划等方法来求解 DDPM 模型。 希望这些信息对你有帮助。如果你有其他问题,欢迎随时问 ### 回答2: DDPM是深度概率的生成模型之一,用于对数据进行建模和生成。它基于概率密度传播机制,可以通过迭代的方式逐步逼近数据分布。 DDPM的核心思想是使用生成网络来模拟数据分布,并通过对抗训练的方式进行参数优化。具体来说,DDPM使用生成器网络来生成样本,同时使用判别器网络来评估生成样本与真实样本之间的差异。生成器网络的目标是生成以数据分布为目标的样本,而判别器网络的目标是区分生成样本和真实样本。 扩散模型具体指的是DDPM中的生成网络是通过对各个层进行可逆扩散操作来生成样本的。在每一次迭代中,生成器网络会通过扩散过程对随机噪声进行迭代扩散,从而逐渐逼近目标数据分布。这种扩散机制可以通过类似蒙特卡洛方法的采样和反向传播过程来实现。通过不断的迭代优化,生成器网络可以逐渐生成符合目标数据分布的样本。 为了保证生成样本质量,DDPM中使用了判别器网络对生成样本和真实样本进行区分。判别器网络的目标是尽可能准确地判断生成样本的真实性。生成器网络则通过最小化判别器对生成样本的评价来进行优化。 总结来说,DDPM是一种使用扩散模型进行数据建模和生成的深度概率模型。它通过迭代的方式逐步逼近数据分布,同时使用判别器网络对生成样本进行评估和优化。这种模型可以用于生成各种类型的数据,例如图像、音频等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呆呆的猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值