【LeetCode】486. 预测赢家

题目

给定一个表示分数的非负整数数组。 玩家 1 从数组任意一端拿取一个分数,随后玩家 2 继续从剩余数组任意一端拿取分数,然后玩家 1 拿,…… 。每次一个玩家只能拿取一个分数,分数被拿取之后不再可取。直到没有剩余分数可取时游戏结束。最终获得分数总和最多的玩家获胜。

给定一个表示分数的数组,预测玩家1是否会成为赢家。你可以假设每个玩家的玩法都会使他的分数最大化。

 

示例 1:

输入:[1, 5, 2]
输出:False
解释:一开始,玩家1可以从1和2中进行选择。
如果他选择 2(或者 1 ),那么玩家 2 可以从 1(或者 2 )和 5 中进行选择。如果玩家 2 选择了 5 ,那么玩家 1 则只剩下 1(或者 2 )可选。
所以,玩家 1 的最终分数为 1 + 2 = 3,而玩家 2 为 5 。
因此,玩家 1 永远不会成为赢家,返回 False 。

示例 2:

输入:[1, 5, 233, 7]
输出:True
解释:玩家 1 一开始选择 1 。然后玩家 2 必须从 5 和 7 中进行选择。无论玩家 2 选择了哪个,玩家 1 都可以选择 233 。
     最终,玩家 1(234 分)比玩家 2(12 分)获得更多的分数,所以返回 True,表示玩家 1 可以成为赢家。

提示:

  • 1 <= 给定的数组长度 <= 20.
  • 数组里所有分数都为非负数且不会大于 10000000 。
  • 如果最终两个玩家的分数相等,那么玩家 1 仍为赢家。

解题思路

方法一:递归


为了判断哪个玩家可以获胜,需要计算一个总分,为先手得分与后手得分之差。当数组中的所有数字都被拿取时,如果总分大于或等于 0,则先手获胜,反之则后手获胜。

由于每次只能从数组的任意一端拿取数字,因此可以保证数组中剩下的部分一定是连续的。假设数组当前剩下的部分为下标 \textit{start} 到下标 \textit{end},其中 0 \le \textit{start} \le \textit{end} < \textit{nums}.\text{length}≤start≤end<nums.length。如果 \textit{start}=\textit{end},则只剩一个数字,当前玩家只能拿取这个数字。如果 \textit{start}<\textit{end},则当前玩家可以选择\textit{nums}[\textit{start}] 或 \textit{nums}[\textit{end}],然后轮到另一个玩家在数组剩下的部分选取数字。这是一个递归的过程。

计算总分时,需要记录当前玩家是先手还是后手,判断当前玩家的得分应该记为正还是负。当数组中剩下的数字多于 1 个时,当前玩家会选择最优的方案,使得自己的分数最大化,因此对两种方案分别计算当前玩家可以得到的分数,其中的最大值为当前玩家最多可以得到的分数。

Python


class Solution:
    def PredictTheWinner(self, nums: List[int]) -> bool:
        def total(start: int, end: int, turn: int) -> int:
            if start == end:
                return nums[start] * turn
            scoreStart = nums[start] * turn + total(start + 1, end, -turn)
            scoreEnd = nums[end] * turn + total(start, end - 1, -turn)
            return max(scoreStart * turn, scoreEnd * turn) * turn
        
        return total(0, len(nums) - 1, 1) >= 0

C++

class Solution {
public:
    bool PredictTheWinner(vector<int>& nums) {
        return total(nums, 0, nums.size() - 1, 1) >= 0;
    }

    int total(vector<int>& nums, int start, int end, int turn) {
        if (start == end) {
            return nums[start] * turn;
        }
        int scoreStart = nums[start] * turn + total(nums, start + 1, end, -turn);
        int scoreEnd = nums[end] * turn + total(nums, start, end - 1, -turn);
        return max(scoreStart * turn, scoreEnd * turn) * turn;
    }
};

复杂度分析

  • 时间复杂度:O(2^n),其中 n 是数组的长度。
  • 空间复杂度:O(n),其中 n 是数组的长度。空间复杂度取决于递归使用的栈空间。

方法二:动态规划


方法一使用递归,存在大量重复计算,因此时间复杂度很高。由于存在重复子问题,因此可以使用动态规划降低时间复杂度。

定义二维数组 \textit{dp},其行数和列数都等于数组的长度,\textit{dp}[i][j] 表示当数组剩下的部分为下标 i 到下标 j 时,当前玩家与另一个玩家的分数之差的最大值,注意当前玩家不一定是先手。

只有当 i \le j时,数组剩下的部分才有意义,因此当 i>j 时,\textit{dp}[i][j]=0

当 i=j 时,只剩一个数字,当前玩家只能拿取这个数字,因此对于所有 0 \le i < \textit{nums}.\text{length},都有 \textit{dp}[i][i]=\textit{nums}[i]

i<j 时,当前玩家可以选择 \textit{nums}[i] 或 \textit{nums}[j],然后轮到另一个玩家在数组剩下的部分选取数字。在两种方案中,当前玩家会选择最优的方案,使得自己的分数最大化。因此可以得到如下状态转移方程:

\textit{dp}[i][j]=\max(\textit{nums}[i] - \textit{dp}[i + 1][j], \textit{nums}[j] - \textit{dp}[i][j - 1])

最后判断 \textit{dp}[0][\textit{nums}.\text{length}-1] 的值,如果大于或等于 0,则先手得分大于或等于后手得分,因此先手成为赢家,否则后手成为赢家。

 

Python

class Solution:
    def PredictTheWinner(self, nums: List[int]) -> bool:
        length = len(nums)
        dp = [[0] * length for _ in range(length)]
        for i, num in enumerate(nums):
            dp[i][i] = num
        for i in range(length - 2, -1, -1):
            for j in range(i + 1, length):
                dp[i][j] = max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1])
        return dp[0][length - 1] >= 0

上述代码中使用了二维数组 \textit{dp}。分析状态转移方程可以看到,\textit{dp}[i][j] 的值只和 \textit{dp}[i + 1][j] 与 \textit{dp}[i][j - 1] 有关,即在计算 \textit{dp} 的第 i 行的值时,只需要使用到 \textit{dp} 的第 i 行和第 i+1 行的值,因此可以使用一维数组代替二维数组,对空间进行优化。

class Solution:
    def PredictTheWinner(self, nums: List[int]) -> bool:
        length = len(nums)
        dp = [0] * length
        for i, num in enumerate(nums):
            dp[i] = num
        for i in range(length - 2, -1, -1):
            for j in range(i + 1, length):
                dp[j] = max(nums[i] - dp[j], nums[j] - dp[j - 1])
        return dp[length - 1] >= 0

复杂度分析

  • 时间复杂度:O(n^2),其中 n 是数组的长度。需要计算每个子数组对应的 \textit{dp} 的值,共有 \frac{n(n+1)}{2} 个子数组。
  • 空间复杂度:O(n),其中 n 是数组的长度。空间复杂度取决于额外创建的数组 \textit{dp},如果不优化空间,则空间复杂度是 O(n^2),使用一维数组优化之后空间复杂度可以降至 O(n)

参考资料

  1. 漫画:什么是动态规划?:https://zhuanlan.zhihu.com/p/31628866
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值