第3章 微分中值定理与导数应用

第一节 微分中值定理

  1. 罗尔定理
    • :设函数 f(x) 在点 x0 的某邻域 U(x0) 内有定义,并且在 x0 处可导,如果对任意的 xU(x0) ,有
      f(x)f(x0)(f(x)f(x0))
      那么 f(x0)=0
    • :如果函数 f(x) 满足 在闭区间 [a,b] 上连续;在开区间 (a,b) 内可导; 在区间端点处的函数值相等,即 f(a)=f(b) ,那么在 (a,b) 内至少有一点 ξ(a<ξ<b) ,使得 f(ξ)=0
  2. 拉格朗日中值定理
    • :如果函数 f(x) 满足 在闭区间 [a,b] 上连续;在开区间 (a,b) 内可导,那么在 (a,b) 内至少有一点 ξ(a<ξ<b) ,使等式 f(b)f(a)=f(ξ)(ba) 成立。
    • Δy=f(x+θΔx)Δx(0<θ<1)
    • 如果函数 f(x) 在区间 I 上的导数恒为零,那么 f(x) 在区间 I 上是一个常数。
  3. 柯西中值定理
    • 西: 如果函数 Y=f(x) X=F(x) 满足,在闭区间 [a,b] 上连续;在开区间 (a,b) 内可导;对任一 x(a,b),F(x)0 ,那么在 (a,b) 内至少有一点 ξ ,使等式
      f(b)f(a)F(b)F(a)=f(ξ)F(ξ)
      成立。

第二节 洛必达法则

  1. 1 :设
    • (1) 当 xa 时,函数 f(x) F(x) 都趋于零;
    • (2) 在点 a 的某去心邻域内,f(x) F(x) 都存在且 F(x)0
    • (3) limxaf(x)F(x) 存在 (或为无穷大),
    • 那么
      limxaf(x)F(x)=limxaf(x)F(x)
  2. 2 :设
    • (1) 当 x 时,函数 f(x) F(x) 都趋于零;
    • (2) 当 |x|>N 时, f(x) F(x) 都存在且 F(x)0
    • (3) limxaf(x)F(x) 存在 (或为无穷大),
    • 那么
      limxaf(x)F(x)=limxaf(x)F(x)

第三节 泰勒公式

  1. (Taylor)
    • 如果函数 f(x) 在含有 x0 的某个开区间 (a,b) 内具直到 (n+1) 阶导数,则对任一 x(a,b) ,有
      f(x)=f(x0)+f(x0)(xx0)+f(x0)2!(xx0)2++f(n)(x0)n!(xx0)n+Rn(x)
      其中
      Rn(x)=f(n+1)(x0)(n+1)!(xx0)n+1
      这里 ξ x0 x 之间的某个值。
    • 上式 f(x) 称为 f(x) (xx0) 的幂展开的带有拉格朗日型余项的 n 阶泰勒公式,而 Rn(x) 称为拉格朗日型余项。在 f(x) 中,除了 Rn(x) 的剩余部分称为函数 f(x) (xx0) 的幂展开的 n 次泰勒多项式。
  2. (Peano) Rn(x)=o[(xx0)n]

第四节 函数的单调性与曲线的凹凸性

  1. 函数单调性的判定法
    • 1 :设函数 y=f(x) [a,b] 上连续,在 (a,b) 内可导。
    • (1) 如果在 (a,b) f(x)>0 ,那么函数 y=f(x) [a,b] 上单调增加;
    • (2) 如果在 (a,b) f(x)<0 ,那么函数 y=f(x) [a,b] 上单调减少;
  2. 曲线的凹凸性与拐点
    • f(x) 在区间 I 上连续,如果对 I 上任意两点 x1,x2 恒有
      f(x1+x22)<f(x1)+f(x2)2
      那么称 f(x) I 上的图形是(向上)凹的(或凹弧);如果恒有
      f(x1+x22)>f(x1)+f(x2)2
      那么称 f(x) I 上的图形是(向上)凸的(或凸弧)。
    • 2:设函数 y=f(x) [a,b] 上连续,在 (a,b) 内具有一阶和二阶导数。
    • (1) 如果在 (a,b) f(x)>0 ,那么函数 y=f(x) [a,b] 上的图形是凹的;
    • (2) 如果在 (a,b) f(x)<0 ,那么函数 y=f(x) [a,b] 上的图形是凸的;

第五节 函数的极值与最大值最小值

  1. 函数的极值及其求法
    • 设函数 f(x) 在点 x0 的某邻域 U(x0) 内有定义,如果对于去心邻域 U(x0) 内的任一 x ,有
      f(x)<f(x0)(f(x)>f(x0))
      那么就称 f(x0) 是函数 f(x) 的一个极大值(或极小值)。
    • 1() 设函数 f(x) x0 处可导,且在 x0 处取得极值,那么 f(x0)=0
    • 2() 设函数 f(x) x0 处连续,且在 x0 的某去心邻域 U(x0,δ) 内可导。
    • (1) 若 x(x0δ,x0) 时, f(x)>0 ,而 x(x0,x0+δ) 时, f(x)<0 ,则 f(x) x0 处取得极大值;
    • (2) 若 x(x0δ,x0) 时, f(x)<0 ,而 x(x0,x0+δ) 时, f(x)>0 ,则 f(x) x0 处取得极小值;
    • (3) 若 xU(x0,δ) 时, f(x) 的符号保持不变,则 f(x) x0 处没有极值。
    • 3() 设函数 f(x) x0 处具有二阶导数且 f(x0)=0 f(x00) ,那么
    • (1) 当 f(x0)<0 时,函数 f(x) x0 处取得极大值;
    • (2) 当 f(x0)>0 时,函数 f(x) x0 处取得极小值;
  2. 最大值最小值问题

第六节 函数图形的描绘

第七节 曲率

  1. 弧微分
    • ds=1+(y)2dx
  2. 曲率及其计算公式
  3. 曲率圆与曲率半径
  4. 曲率中心的计算公式 渐屈线与渐伸线

第八节 方程的近似解

  1. 二分法
  2. 切线法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值