第三章 微分中值定理与导数的应用

参考文献

高昆轮 2019考研数学

点进去你会发现新大陆:考研数学证明题的那些事CSDN知乎

一、微分中值定理

罗尔定理

 设  f ( x )  满足  { [ a , b ]  上连续  ( a , b )  内可导  f ( a ) = f ( b ) ,  则  ∃ ξ ∈ ( a , b ) ,  使  f ′ ( ξ ) = 0 \text { 设 } f(x) \text { 满足 } \begin{cases} {[a, b] \text { 上连续 }} \\ (a, b) \text { 内可导 }\\ f(a)=f(b) \end{cases}\\ , \text { 则 } \exists \xi \in(a, b),\text { 使 } f^{\prime}(\xi)=0   f(x) 满足 [a,b] 上连续 (a,b) 内可导 f(a)=f(b),  ξ(a,b), 使 f(ξ)=0

{ 闭 区 间 连 续 开 区 间 可 导 端 点 值 相 等 \begin{cases} 闭区间连续\\ 开区间可导\\ 端点值相等 \end{cases}

重点:端点值相等, f ( ξ ) = 0 f(\xi)=0 f(ξ)=0

零点定理和介值定理也是闭区间连续


题型
【例1】证明等式关于函数以及函数的二阶导,无一阶导,两个端点值相等,因此想到罗尔定理 f ′ ( x ) = 0 f^{\prime}(x)=0 f(x)=0

由端点值相等,猜测罗尔定理, f ′ ( x ) = 0 f^{\prime}(x)=0 f(x)=0,等式能否构造为导数形式
原函数保留,二阶导由一阶导的导数得到,因此构造的形式关于原函数及一阶导

【例2】显然是罗尔定理,所以还是构造为导数形式
由导数运算法则,等式似乎缺少系数,问题:什么求导后能被消去的,答:以e为底的指数

小结:罗尔定理证明题,一般是构造为导数形式

【例3】不正确小结:给定条件可知为罗尔定理,需证明两个问题,第一个是零点定理或介值定理,第二个是罗尔定理
对于第一个问题,已知使用零点定理,也是根据等式构造函数(非导数形式),判断是否异号,是则存在零点,否则无。
对于第二个问题,还是构造为导数形式,不过是广义的。广义无常,本质不变。

【例4】条件中无端点值相等,其在证明中,轮换形式即端点值相等。因此对于这种无端点值相等的题目,找到轮换形式,然后构造函数即可。此法称之为常数k值法,此题还可用拉格朗日中值定理证明。

【习题11】显然必须要用到罗尔定理,但是两个端点值并不相等,引用介值定理使得端点值相等


总结
考察罗尔定理的三种形式 { 端 点 值 相 等 f ′ ( ξ ) = 0 端 点 值 相 等 和 f ′ ( ξ ) = 0 \begin{cases} 端点值相等\\ f^{\prime}(\xi)=0\\ 端点值相等 和 f^{\prime}(\xi)=0 \end{cases}

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值