第7章 微分方程

第一节 微分方程的基本概念

  1. 微分方程:一般的,凡表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程,有时也简称方程。
  2. 微分方程的阶:微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶。
  3. 微分方程的解:
  4. 微分方程的通解:如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解。

第二节 可分离变量的微分方程

第三节 齐次方程

  1. 齐次方程:如果一阶微分方程可化为
    dydx=φ(yx)
    的形式,那么就称这方程为齐次方程。
  2. 可化为齐次的方程

第四节 一阶线性微分方程

  1. 线性方程
    • dydx+P(x)y=Q(x)(1)
      叫做一阶线性微分方程,因为它对于未知函数 y 及其导数是一次方程。如果 Q(x)0,则方程称为齐次的;如果 Q(x)0 ,则方程称为非齐次的。为了求出非齐次线性方程的解,我们先把 Q(x) 换成零而写出方程
      dyy+P(x)dx=0(2)
      方程 (2) 叫做对应于非齐次线性方程(1)的齐次线性方程。方程(2)是可分离变量的,分离变量后得
      dyy=P(x)dx
      两端积分,得
      ln|y|=P(x)dx+C1
      y=CeP(x)dx(C=±eC1)
      这是对应的齐次线性方程(2)的通解。
    • 现在我们使用所谓常数变易法来求非齐次线性方程(1)的通解。这方法是把(2)的通解中的 C 换成 x 的位置函数 u(x) ,即作变换
      y=ueP(x)dx(3)
      于是
      dydx=ueP(x)dxuP(x)eP(x)dx(4)
      将 (3)和(4)代入方程(1)得
      ueP(x)dxuP(x)eP(x)dx+P(x)ueP(x)dx=Q(x)
      ueP(x)dx=Q(x),u=Q(x)eP(x)dx
      两端积分,得
      u=Q(x)eP(x)dx+C
      把上式代入(3),便得齐次线性方程(1)的通解
      y=eP(x)dx(Q(x)eP(x)dxdx+C)(5)
      将(5)式改写成两项之和
      y=CeP(x)dx+eP(x)dxQ(x)eP(x)dxdx
      上式右端第一项对应的齐次线性方程(2)的通解,第二项是非齐次线性方程(1)的一个特解(在(1)的通解(5)中取 C=0 便得到这个特解)。由此可知,一阶非齐次线性方程的通解等于对应的齐次方程的通解与非齐次方程的一个特解之和。
  2. 伯努利方程

第五节 可降阶的高阶微分方程

  1. y(n)=f(x) 型的微分方程
  2. y=f(x,y) 型的微分方程
  3. y=f(y,y) 型的微分方程

第六节 高阶线性微分方程

  1. 二阶线性微分方程举例
  2. 线性微分方程的解的结构
  3. 常数变易法

第七节 常系数齐次线性微分方程

第八节 常系数非齐次线性微分方程

第九节 欧拉方程

第十节 常系数线性微分方程组解法举例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值