3.1 微分中值定理
1 罗尔定理
费马引理:
在某一范围内,函数可导,,
称导数等于0的点为驻点。
罗尔定理:
函数在闭区间上有意义,在该区间内函数处处可导,且端点值相等,则在该区间内肯定至少存在一点导数等于0.
2 拉格朗日中值定理
罗尔定理的条件要求两端点值相等,这要求太严,并不常见,拉格朗日 中值定理去掉这个条件。则
,a,b是两个端点。
几何意义:
费马引理:
在某一范围内,函数可导,,
称导数等于0的点为驻点。
罗尔定理:
函数在闭区间上有意义,在该区间内函数处处可导,且端点值相等,则在该区间内肯定至少存在一点导数等于0.
罗尔定理的条件要求两端点值相等,这要求太严,并不常见,拉格朗日 中值定理去掉这个条件。则
,a,b是两个端点。
几何意义: