第一章 spring boot开发入门

本文详细介绍了SpringBoot的主要优点,包括快速入门、默认配置、内嵌式Web容器、无需XML配置和自动化配置。此外,还讲解了@RestController、@Controller和@RequestMapping等注解的用途,以及@GetMapping的简化作用,帮助读者理解如何在SpringBoot中创建和使用Web控制器。
摘要由CSDN通过智能技术生成

SpringBoot的优点

  • 为所有Spring开发者更快的入门
  • 开箱即用,提供各种默认配置来简化项目配置
  • 内嵌式容器简化Web项目
  • 没有冗余代码生成和XML配置的要求
  • 自动化配置Spring和第三方库

创建一个用于Web访问的Controller

  1. @RestController = @Controller + @ResponseBody组成,等号右边两位同志简单介绍两句,就明白我们@RestController的意义了:
    @Controller 将当前修饰的类注入SpringBoot IOC容器,使得从该类所在的项目跑起来的过程中,这个类就被实例化。当然也有语义化的作用,即代表该类是充当Controller的作用
    @ResponseBody 它的作用简短截说就是指该类中所有的API接口返回的数据,甭管你对应的方法返回Map或是其他Object,它会以Json字符串的形式返回给客户端,本人尝试了一下,如果返回的是String 类型,则仍然是String。
  2. @GetMapping等同于@RequestMapping(method=RequestMethod.GET)注解如果我们想使用传统的@RequestMapping注释实现URL处理程序,那么它应该是这样的:
    @RequestMapping(value = “/get/{id}”, method = RequestMethod.GET)
    新方法可以简化为:
    @GetMapping("/get/{id}")
PyTorch深度学习实战中,可以使用卷积神经网络进行图像分类任务。在实战中,可以使用经典的卷积神经网络模型,如VGG、ResNet、Inception和DenseNet等。这些模型都是在深度学习的发展过程中出现的经典模型,对深度学习的学术研究和工业生产都起到了巨大的促进作用。初学者可以通过阅读论文和实现代码来全面了解这些模型。例如,可以使用PyTorch中的torchvision.models模块来加载预训练的卷积神经网络模型,如VGG-16、VGG-19和ResNet等\[1\]。其中,VGG-16和VGG-19是由卷积层、池化层和全连接层等不同组合构成的经典卷积神经网络模型\[1\]。而ResNet是一种使用残差单元连接而成的卷积神经网络模型,通过跨层的短接来突出微小的变化,使得网络对误差更加敏感,并解决了网络退化现象,具有良好的学习效果\[2\]\[3\]。因此,在PyTorch深度学习实战中,可以选择合适的卷积神经网络模型来进行图像分类任务。 #### 引用[.reference_title] - *1* *2* *3* [PyTorch深度学习实战 | 典型卷积神经网络](https://blog.csdn.net/qq_41640218/article/details/129832298)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值