2018.11.15——学习率和梯度系列,Momentum、AdaGrad、RMSProp、Adam

Momentum:即前几次梯度也会参与运算。新梯度 = 原始梯度  和  之前的梯度的累加 的运算。前后梯度方向一致时,能够加速学习;前后方向不一致时,能够抑制震荡。

--------------------------------------------------------学习率和梯度有关-------------------------------------------------------------------------------

AdaGrad:自适应学习率,只需要设定一个全局的学习率,但是这并非是实际学习速率,实际的速率是与以往参数的模之和的开方成反比的。如果梯度大,那么学习速率就大;梯度小,那么学习速率小。缺点:在普通算法中也许效果不错,但深度学习中,深度过深时会造成训练提前结束。(由于一会快一会慢的学习速率)

RMSProp:在AdaGrad基础上,对学习率改进,每回合学习速率都有一定比例的衰减,衰减系数r。

Adam:带有Momentum动量项的RMSProp,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习速率。为不同的参数计算不同的自适应学习速率。

深度学习中的优化方法是指在训练神经网络时,通过更新模型参数来最小化损失函数的过程中所采用的算法。常用的优化方法包括:momentum、Nesterov MomentumAdaGradAdadelta、RMSprop、Adam等。 1. Momentum Momentum是一种基于梯度下降的优化方法,它通过引入动量来加速收敛。在更新模型参数时,不仅考虑当前的梯度,还考虑之前的梯度对更新方向的影响,通过累积之前的梯度,使得更新方向更加稳定,加速收敛。 2. Nesterov Momentum Nesterov MomentumMomentum的一种变体,它在更新模型参数之前,先向前“看一步”,计算模型参数在当前动量下的移动方向,然后再计算当前位置的梯度,最后根据这两个信息来更新模型参数。相比于Momentum,Nesterov Momentum能够更快地收敛。 3. AdaGrad AdaGrad是一种自适应学习率的优化方法,它通过动态地调整学习率来适应不同参数的更新需求。具体地说,它将学习率分别应用于每个参数的更新量上,使得每个参数的学习率随着训练的进行不断减小,从而减少参数更新的震荡。 4. Adadelta Adadelta也是一种自适应学习率的优化方法,它和AdaGrad不同之处在于,它不仅考虑了过去的梯度信息,还考虑了过去的参数更新信息。具体地说,它通过维护一个累积梯度平方的指数衰减平均值和一个累积参数更新平方的指数衰减平均值,来动态调整学习率和更新量,使得参数更新更加平稳。 5. RMSprop RMSprop也是一种自适应学习率的优化方法,它和Adadelta类似,但只考虑了过去的梯度信息,没有考虑过去的参数更新信息。具体地说,它通过维护一个梯度平方的指数衰减平均值来动态调整学习率,使得参数更新更加平稳。 6. Adam Adam是一种结合了MomentumRMSprop的优化方法,它不仅考虑了梯度的一阶矩和二阶矩信息,还引入了偏置修正,使得参数更新更加准确。相比于其他优化方法,Adam不仅收敛速度快,还具有较好的性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值