04.第三章 Poisson过程(2)

第三章 Poisson过程(2)

1.Poisson过程的合成与分解

泊松过程的合成:对于两个泊松过程 N 1 , N 2 \boldsymbol N_1,\boldsymbol N_2 N1,N2,参数分别为 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2,令 N ( t ) = N 1 ( t ) + N 2 ( t ) N(t)=N_1(t)+N_2(t) N(t)=N1(t)+N2(t),则 N = ( N ( t ) , t ≥ 0 ) \boldsymbol N=(N(t),t\ge0) N=(N(t),t0)是参数为 λ 1 + λ 2 \lambda_1+\lambda_2 λ1+λ2的泊松过程。由于 N 1 , N 2 \boldsymbol N_1,\boldsymbol N_2 N1,N2各自具有独立平稳增量性,所以只要证明 N ( t ) N(t) N(t)的分布即可。
P ( N ( t ) = k ) = P ( N 1 ( t ) + N 2 ( t ) = k ) = ∑ l = 0 k P ( N 1 ( t ) = l , N 2 ( t ) = k − l ) = ∑ l = 0 k ( λ 1 t ) l l ! e − λ 1 t ( λ 2 t ) k − l ( k − l ) ! e − λ 2 t = ( λ 1 + λ 2 ) k t k k ! e − ( λ 1 + λ 2 ) t \begin{aligned} &P(N(t)=k)\\ =&P(N_1(t)+N_2(t)=k)\\ =&\sum_{l=0}^k P(N_1(t)=l,N_2(t)=k-l)\\ =&\sum_{l=0}^k \frac{(\lambda_1t)^l}{l!}e^{-\lambda _1t}\frac{(\lambda_2t)^{k-l}}{(k-l)!}e^{-\lambda_2t}\\ =&\frac{(\lambda_1+\lambda_2)^kt^k}{k!}e^{-(\lambda_1+\lambda_2)t} \end{aligned} ====P(N(t)=k)P(N1(t)+N2(t)=k)l=0kP(N1(t)=l,N2(t)=kl)l=0kl!(λ1t)leλ1t(kl)!(λ2t)kleλ2tk!(λ1+λ2)ktke(λ1+λ2)t
泊松过程的分解:对于参数为 λ \lambda λ的Poisson过程 N \boldsymbol N N,发生的事件可以分为I型与II型,且每一个事件独立地以 p p p概率属于I型,以 1 − p 1-p 1p概率属于II型。则I型事件的发生服从参数为 λ p \lambda p λp的Poisson过程 N 1 \boldsymbol N_1 N1,II型事件的发生服从参数为 λ ( 1 − p ) \lambda(1-p) λ(1p)的Poisson过程 N 2 \boldsymbol N_2 N2,且 N 1 , N 2 \boldsymbol N_1,\boldsymbol N_2 N1,N2也相互独立。

ξ i = 1 \xi_i=1 ξi=1代表第 i i i个事件为I型, ξ i = 0 \xi_i=0 ξi=0代表第 i i i个事件为II型,那么 ξ i \xi_i ξi独立同分布于 b ( 1 , p ) b(1,p) b(1,p)。这样就有
N 1 ( t ) = ∑ i = 1 N ( t ) ξ i , N 2 ( t ) = ∑ i = 1 N ( t ) ( 1 − ξ i ) N_1(t)=\sum_{i=1}^{N(t)}\xi_i,\quad N_2(t)=\sum_{i=1}^{N(t)}(1-\xi_i) N1(t)=i=1N(t)ξi,N2(t)=i=1N(t)(1ξi)
证明 N 1 \boldsymbol N_1 N1是参数为 λ p \lambda p λp的随机过程,有
P ( N 1 ( t ) = k ) = ∑ n = k ∞ P ( N 1 ( t ) = k ∣ N ( t ) = n ) P ( N ( t ) = n ) = ∑ n = k ∞ C n k p k ( 1 − p ) n − k λ n t n n ! e − λ t = ∑ n = k ∞ p k ( 1 − p ) n − k ( λ t ) n k ! ( n − k ) ! e − λ t = p k ( λ t ) k k ! e − λ t ∑ n = k ∞ [ λ t ( 1 − p ) ] n − k ( n − k ) ! = ( λ t p ) k k ! e − λ t p \begin{aligned} &P(N_1(t)=k)\\ =&\sum_{n=k}^\infty P(N_1(t)=k|N(t)=n)P(N(t)=n)\\ =&\sum_{n=k}^\infty C_n^kp^k(1-p)^{n-k}\frac{\lambda^nt^n}{n!}e^{-\lambda t}\\ =&\sum_{n=k}^\infty \frac{p^k(1-p)^{n-k}(\lambda t)^n}{k!(n-k)!}e^{-\lambda t}\\ =&\frac{p^k(\lambda t)^k}{k!}e^{-\lambda t}\sum_{n=k}^\infty \frac{[\lambda t(1-p)]^{n-k}}{(n-k)!}\\ =&\frac{(\lambda tp)^k}{k!}e^{-\lambda tp} \end{aligned} =====P(N1(t)=k)n=kP(N1(t)=kN(t)=n)P(N(t)=n)n=kCnkpk(1p)nkn!λntneλtn=kk!(nk)!pk(1p)nk(λt)neλtk!pk(λt)keλtn=k(nk)![λt(1p)]nkk!(λtp)keλtp
独立平稳增量性也可以证明。

2.到达时刻的条件分布

到达时刻的条件分布,指的是在给定 N ( t ) = n N(t)=n N(t)=n的情况下,在 [ 0 , t ] [0,t] [0,t]区间内会发生 n n n个事件,它们的到达次序依次为 S 1 , ⋯   , S n S_1,\cdots,S_n S1,,Sn,求 ( S 1 , ⋯   , S n ) (S_1,\cdots,S_n) (S1,,Sn)的联合分布。事实上,有
( S 1 , ⋯   , S n ∣ N ( t ) = n ) = d ( U ( 1 ) , ⋯   , U ( n ) ) (S_1,\cdots,S_n|N(t)=n)\stackrel d=(U_{(1)},\cdots,U_{(n)}) (S1,,SnN(t)=n)=d(U(1),,U(n))
这里 U ( 1 ) , ⋯   , U ( n ) U_{(1)},\cdots,U_{(n)} U(1),,U(n) [ 0 , t ] [0,t] [0,t] n n n个独立同分布的均匀随机变量的次序统计量。
P ( S k ∈ ( x k − ε k , x k + ε k ) ∣ N ( t ) = n ) = P ( S k ∈ ( x k − ε k , x k + ε k ) , N ( t ) = n ) P ( N ( t ) = n ) = [ ∏ k = 1 n λ ( 2 ε k ) ] e − λ t ( λ t ) n n ! e − λ t = n ! t n ∏ k = 1 n ( 2 ε k ) \begin{aligned} &P(S_k\in (x_k-\varepsilon_k,x_k+\varepsilon_k)|N(t)=n)\\ =&\frac{P(S_k\in (x_k-\varepsilon_k,x_k+\varepsilon _k),N(t)=n)}{P(N(t)=n)}\\ =&\frac{[\prod_{k=1}^n \lambda(2\varepsilon_k) ]e^{-\lambda t}}{\frac{(\lambda t)^n}{n!}e^{-\lambda t}}=\frac{n!}{t^n}\prod_{k=1}^n (2\varepsilon_k) \end{aligned} ==P(Sk(xkεk,xk+εk)N(t)=n)P(N(t)=n)P(Sk(xkεk,xk+εk),N(t)=n)n!(λt)neλt[k=1nλ(2εk)]eλt=tnn!k=1n(2εk)
注意,计算这个条件概率的分子时,实际上要将 [ 0 , t ] [0,t] [0,t]分为 2 k + 1 2k+1 2k+1个区间,其中 k k k个区间是 ( x k − ε k , x k + ε k ) (x_k-\varepsilon_k,x_k+\varepsilon_k) (xkεk,xk+εk),它们中各有一个事件发生;另外 k + 1 k+1 k+1个是出去这 k k k个后的剩余区间,它们中都没有事件发生。由此计算条件概率
p S 1 , ⋯   , S n ∣ N ( t ) ( x 1 , ⋯   , x n ∣ n ) = P ( S k ∈ ( x k − ε k , x k + ε k ) ∣ N ( t ) = n ) ∏ k = 1 n ( 2 ε k ) = n ! t n \begin{aligned} &p_{S_1,\cdots,S_n|N(t)}(x_1,\cdots,x_n|n)\\ =&\frac{P(S_k\in (x_k-\varepsilon_k,x_k+\varepsilon_k)|N(t)=n)}{\prod_{k=1}^n (2\varepsilon_k)}\\ =&\frac{n!}{t^n} \end{aligned} ==pS1,,SnN(t)(x1,,xnn)k=1n(2εk)P(Sk(xkεk,xk+εk)N(t)=n)tnn!
这恰好是 ( U ( 1 ) , ⋯   , U ( n ) ) (U_{(1)},\cdots,U_{(n)}) (U(1),,U(n))的联合密度函数。

3.复合Poisson过程

复合Poisson过程指的是,对于一系列独立同分布于 G ( x ) G(x) G(x)的随机变量 ξ i \xi_i ξi以及参数为 λ \lambda λ的泊松过程 N ( t ) N(t) N(t),称随机过程 Z = ( Z ( t ) , t ≥ 0 ) \boldsymbol Z=(Z(t),t\ge 0) Z=(Z(t),t0)为复合Poisson过程,其中
Z ( t ) = ∑ i = 1 N ( t ) ξ i Z(t)=\sum_{i=1}^{N(t)}\xi_i Z(t)=i=1N(t)ξi
如果 N \boldsymbol N N ξ i \xi_i ξi相互独立且 E ξ i = μ , D ξ i = σ 2 E\xi_i=\mu,D\xi_i=\sigma^2 Eξi=μ,Dξi=σ2,那么

  1. E ( Z ( t ) ) = μ λ t E(Z(t))=\mu\lambda t E(Z(t))=μλt
    E Z ( t ) = E ∑ i = 1 N ( t ) ξ i = ∑ n = 0 ∞ E [ ∑ i = 1 N ( t ) ξ i ∣ N ( t ) = n ] ⋅ P ( N ( t ) = n ) = ∑ n = 0 ∞ ( ∑ i = 1 n E ξ i ⋅ P ( N ( t ) = n ) ) = ∑ n = 0 ∞ ( n μ ⋅ ( λ t ) n n ! e − λ t ) = μ λ t \begin{aligned} EZ(t)=&E\sum_{i=1}^{N(t)}\xi_i\\ =&\sum_{n=0}^\infty E[\sum_{i=1}^{N(t)}\xi_i|N(t)=n]\cdot P(N(t)=n)\\ =&\sum_{n=0}^\infty \left(\sum_{i=1}^n E\xi_i \cdot P(N(t)=n)\right)\\ =&\sum_{n=0}^\infty \left(n\mu \cdot\frac{(\lambda t)^n}{n!}e^{-\lambda t}\right)\\ =&\mu\lambda t \end{aligned} EZ(t)=====Ei=1N(t)ξin=0E[i=1N(t)ξiN(t)=n]P(N(t)=n)n=0(i=1nEξiP(N(t)=n))n=0(nμn!(λt)neλt)μλt
    这里用到全期望公式
    E Y = ∑ x i E ( Y ∣ X = x i ) P ( X = x i ) E Y = ∫ − ∞ ∞ E ( Y ∣ X = x ) p ( x ) d x EY=\sum_{x_i}E(Y|X=x_i)P(X=x_i)\\ EY=\int_{-\infty }^\infty E(Y|X=x)p(x)dx EY=xiE(YX=xi)P(X=xi)EY=E(YX=x)p(x)dx

  2. D ( Z ( t ) ) = ( μ 2 + σ 2 ) λ t D(Z(t))=(\mu^2+\sigma^2)\lambda t D(Z(t))=(μ2+σ2)λt
    E [ Z ( t ) ] 2 = E ( ∑ i = 1 N ( t ) ξ i ) 2 = ∑ n = 0 ∞ E ( ( ∑ i = 1 N ( t ) ξ i ) 2 ∣ N ( t ) = n ) P ( N ( t ) = n ) = ∑ n = 0 ∞ E ( ∑ i = 1 n ξ i 2 + 2 ∑ 1 ≤ i < j ≤ n ξ i ξ j ) P ( N ( t ) = n ) = ∑ n = 0 ∞ ( n ( σ 2 + μ 2 ) + n ( n − 1 ) μ 2 ) ( λ t ) n n ! e − λ t = [ ( σ 2 + μ 2 ) λ t ∑ n = 1 ∞ ( λ t ) n − 1 ( n − 1 ) ! + μ 2 ( λ t ) 2 ∑ n = 2 ∞ ( λ t ) n − 2 ( n − 2 ) ! ] e − λ t = λ t ( σ 2 + μ 2 ) + ( λ t μ ) 2 D [ Z ( t ) ] = E [ Z ( t ) ] 2 − [ E Z ( t ) ] 2 = λ t ( σ 2 + μ 2 ) \begin{aligned} &E[Z(t)]^2\\ =&E\left(\sum_{i=1}^{N(t)} \xi_i\right)^2\\ =&\sum_{n=0}^\infty E\left(\left(\sum_{i=1}^{N(t)}\xi_i\right)^2\Bigg|N(t)=n\right)P(N(t)=n)\\ =&\sum_{n=0}^\infty E\left(\sum_{i=1}^n \xi_i^2+2\sum_{1\le i<j\le n}\xi_i\xi_j\right)P(N(t)=n)\\ =&\sum_{n=0}^\infty (n(\sigma^2+\mu^2)+n(n-1)\mu^2)\frac{(\lambda t)^n}{n!}e^{-\lambda t}\\ =&\left[(\sigma^2+\mu^2)\lambda t\sum_{n=1}^\infty \frac{(\lambda t)^{n-1}}{(n-1)!}+\mu^2(\lambda t)^2\sum_{n=2}^\infty\frac{(\lambda t)^{n-2}}{(n-2)!}\right]e^{-\lambda t}\\ =&\lambda t(\sigma^2+\mu^2)+(\lambda t\mu )^2\\ \\ &D[Z(t)]=E[Z(t)]^2-[EZ(t)]^2=\lambda t(\sigma^2+\mu^2) \end{aligned} ======E[Z(t)]2Ei=1N(t)ξi2n=0Ei=1N(t)ξi2N(t)=nP(N(t)=n)n=0E(i=1nξi2+21i<jnξiξj)P(N(t)=n)n=0(n(σ2+μ2)+n(n1)μ2)n!(λt)neλt[(σ2+μ2)λtn=1(n1)!(λt)n1+μ2(λt)2n=2(n2)!(λt)n2]eλtλt(σ2+μ2)+(λtμ)2D[Z(t)]=E[Z(t)]2[EZ(t)]2=λt(σ2+μ2)

  3. Z ( t ) Z(t) Z(t)具有独立平稳增量性。令 ϕ ( ⋅ ) \phi(\cdot) ϕ() ξ 1 \xi_1 ξ1的特征函数,任给 s < t s<t s<t u , v ∈ R u,v\in \R u,vR,得
    E e i u [ Z ( t ) − Z ( s ) ] + i v Z ( s ) = E N E ξ [ e i u ∑ j = N ( s ) N ( t ) ξ j + i v ∑ k = 1 N ( s ) ξ k ] = E N ( E ξ e i u ∑ j = N ( s ) + 1 N ( t ) ξ j ⋅ E ξ e i v ∑ k = 1 N ( s ) ξ k ) = E N ϕ ( u ) N ( t ) − N ( s ) ⋅ E N ϕ ( v ) N ( s ) = E e i u [ Z ( t ) − Z ( s ) ] E e i v Z ( s ) \begin{aligned} &Ee^{iu[Z(t)-Z(s)]+ivZ(s)}\\ =&E_{\boldsymbol N}E_{\xi}[e^{iu\sum\limits_{j=N(s)}^{N(t)}\xi_j+iv\sum\limits_{k=1}^{N(s)}\xi_k}]\\ =&E_{\boldsymbol N}\left(E_\xi e^{iu\sum_{j=N(s)+1}^{N(t)}\xi_j}\cdot E_\xi e^{iv\sum_{k=1}^{N(s)}\xi_k}\right)\\ =&E_{\boldsymbol N}\phi(u)^{N(t)-N(s)}\cdot E_{\boldsymbol N}\phi (v)^{N(s)}\\ =&Ee^{iu[Z(t)-Z(s)]}Ee^{ivZ(s)} \end{aligned} ====Eeiu[Z(t)Z(s)]+ivZ(s)ENEξ[eiuj=N(s)N(t)ξj+ivk=1N(s)ξk]EN(Eξeiuj=N(s)+1N(t)ξjEξeivk=1N(s)ξk)ENϕ(u)N(t)N(s)ENϕ(v)N(s)Eeiu[Z(t)Z(s)]EeivZ(s)
    这就证明了独立增量性,再证明 E e i u [ Z ( t ) − Z ( s ) ] = E e i u Z ( t − s ) Ee^{iu[Z(t)-Z(s)]}=Ee^{iuZ(t-s)} Eeiu[Z(t)Z(s)]=EeiuZ(ts)即证明平稳增量性。

    证明两个随机变量 X , Y X,Y X,Y独立,只需要证明以下等式成立(择一):
    E e u X + v Y = E e u X E e v Y E e i u X + i v Y = E e i u X E e i v Y Ee^{uX+vY}=Ee^{uX}Ee^{vY}\\ Ee^{iuX+ivY}=Ee^{iuX}Ee^{ivY} EeuX+vY=EeuXEevYEeiuX+ivY=EeiuXEeivY

复合泊松过程在实际应用中,常常用到全期望公式和期望与概率的关联式。全期望公式即
E Y = E [ E ( Y ∣ X ) ] = E ∫ − ∞ ∞ E ( Y ∣ X = x ) d F X ( x ) EY=E[E(Y|X)]=E\int_{-\infty} ^\infty E(Y|X=x)dF_X(x) EY=E[E(YX)]=EE(YX=x)dFX(x)
当随机变量 X X X为非负随机变量,即 X > 0 X>0 X>0时,有
E X = ∫ 0 ∞ x d F ( x ) = ∫ 0 ∞ ∫ 0 x d t d F ( x ) = ∫ 0 ∞ P ( X > x ) d t EX=\int_0^\infty xdF(x)=\int_0^\infty \int_0^x dtdF(x)=\int_0^\infty P(X>x)dt EX=0xdF(x)=00xdtdF(x)=0P(X>x)dt

当运用全期望公式时会经常需要计算条件概率,此时要联系 S i S_i Si U i U_i Ui的关系换元计算。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值