07.第二章 随机变量与分布函数(5)

第二章 随机变量与分布函数(5)

1.一维随机变量的函数

随机变量函数,指的是用某一个普通的实函数 g ( ⋅ ) g(\cdot) g()作用于随机变量 X X X,这样无论随机变量 X X X取什么值 x x x g ( X ) g(X) g(X)都可以取相应的 g ( x ) g(x) g(x),显然 g ( X ) g(X) g(X)也是随机变量,它的分布跟 X X X存在联系。

如果 X X X是离散型随机变量,则 X X X的所有取值是可列的,那么 Y = g ( X ) Y=g(X) Y=g(X)的所有取值也是可列的,故 Y Y Y也是离散型随机变量,且 Y Y Y的分布列为
P ( Y = y ) = ∑ x i : g ( x i ) = y p ( x i ) . P(Y=y)=\sum_{x_i:g(x_i)=y}p(x_i). P(Y=y)=xi:g(xi)=yp(xi).
如果 X X X连续型随机变量,要求 Y = g ( X ) Y=g(X) Y=g(X)的分布函数 G ( y ) G(y) G(y),有
G ( y ) = P ( Y ≤ y ) = P ( g ( x ) ≤ y ) = ∫ B p ( x ) d x , G(y)=P(Y\le y)=P(g(x)\le y)=\int_B p(x) dx, G(y)=P(Yy)=P(g(x)y)=Bp(x)dx,
这里 B B B是满足 g ( x ) ≤ y g(x)\le y g(x)y x x x的取值集合,也是一个一维Borel集。这个形式并不常用,但如果 g ( x ) g(x) g(x)唯一的反函数 x = g − 1 ( y ) x=g^{-1}(y) x=g1(y),则 Y Y Y的密度函数可以写成
q Y ( y ) = p X ( g − 1 ( y ) ) ∣ d g − 1 ( y ) d y ∣ I ( y ∈ f ( x ) 的 值 域 ) . q_Y(y)=p_X(g^{-1}(y))\left|\frac{dg^{-1}(y)}{dy}\right|I_{(y\in f(x)的值域)}. qY(y)=pX(g1(y))dydg1(y)I(yf(x)).
为便于计算,也可以写成
q Y ( y ) ∣ d y ∣ = p X ( x ) ∣ d x ∣ , x = g − 1 ( y ) . q_Y(y)|dy|=p_X(x)|dx|,\quad x=g^{-1}(y). qY(y)dy=pX(x)dx,x=g1(y).
一般 x x x可以通过 y = g ( x ) y=g(x) y=g(x)直接反解出唯一 x = g − 1 ( y ) x=g^{-1}(y) x=g1(y)。但也有 x x x对应的反函数不唯一的情况(如 y = x 2 I ( − 1 ≤ x ≤ 1 ) y=x^2I_{(-1\le x\le 1)} y=x2I(1x1),此时有 x 1 = y x_1=\sqrt y x1=y x 2 = − y x_2=-\sqrt y x2=y 两种情况。假设 X X X的密度为 p ( x ) p(x) p(x),则此时
q ( y ) = p ( x 1 ) ∣ d x 1 d y ∣ + p ( x 2 ) ∣ d x 2 d y ∣ = p ( y ) + p ( − y ) 2 y I ( 0 ≤ y ≤ 1 ) . q(y)=p(x_1)\left|\frac{dx_1}{dy}\right|+p(x_2)\left|\frac{dx_2}{dy}\right|=\frac{p(\sqrt y)+p(-\sqrt y)}{2\sqrt y}I_{(0\le y\le 1)}. q(y)=p(x1)dydx1+p(x2)dydx2=2y p(y )+p(y )I(0y1).
X ∼ U ( − 1 , 1 ) X\sim U(-1,1) XU(1,1),则 q ( y ) = 1 2 y I ( 0 ≤ y ≤ 1 ) q(y)=\frac{1}{2\sqrt y}I_{(0\le y\le 1)} q(y)=2y 1I(0y1)。也就是说,反函数不唯一的情况下,直接把几种情况相加就好了。

2.随机向量函数

对于 ( X 1 , ⋯   , X n ) (X_1,\cdots,X_n) (X1,,Xn),随机向量函数是 f ( X 1 , ⋯   , X n ) f(X_1,\cdots ,X_n) f(X1,,Xn),这里 f f f是多元函数,即给定 x 1 , ⋯   , x n x_1,\cdots,x_n x1,,xn的输入能输出一个单值。如果 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn都是离散的,那显然 Y = f ( X 1 , ⋯   , X n ) Y=f(X_1,\cdots,X_n) Y=f(X1,,Xn)也是离散的,分布列可以用类似于离散随机变量函数的方式写出。

如果 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn是连续的,则
F Y ( y ) = ∫ ⋯ ∫ f ( x 1 , ⋯   , x n ≤ y ) p ( x 1 , ⋯   , x n ) d x 1 ⋯ d x n . F_Y(y)={\int\cdots\int}_{f(x_1,\cdots,x_n\le y)}p(x_1,\cdots,x_n)dx_1\cdots dx_n. FY(y)=f(x1,,xny)p(x1,,xn)dx1dxn.
这个这个式子比较少应用,但有一些特例需要了解。

Y = X 1 + X 2 Y=X_1+X_2 Y=X1+X2的分布函数是
F Y ( y ) = ∬ x 1 + x 2 ≤ y p ( x 1 , x 2 ) d x 1 d x 2 = ∫ − ∞ ∞ d x 1 ∫ − ∞ y − x 1 p ( x 1 , x 2 ) d x 2 = z = x 1 + x 2 x 2 = z − x 1 ∫ − ∞ ∞ d x 1 ∫ − ∞ y p ( x 1 , z − x 1 ) d z = ∫ − ∞ y [ ∫ − ∞ ∞ p ( x 1 , z − x 1 ) d x 1 ] d z . \begin{aligned} F_Y(y)=&\iint\limits_{x_1+x_2\le y}p(x_1,x_2)dx_1dx_2\\ =&\int_{-\infty}^\infty dx_1\int_{-\infty}^{y-x_1}p(x_1,x_2)dx_2\\ \xlongequal[z=x_1+x_2]{x_2=z-x_1}&\int_{-\infty}^\infty dx_1\int_{-\infty}^{y}p(x_1,z-x_1)dz\\ =&\int_{-\infty}^y \left[\int_{-\infty}^\infty p(x_1,z-x_1)dx_1\right] dz. \end{aligned} FY(y)==x2=zx1 z=x1+x2=x1+x2yp(x1,x2)dx1dx2dx1yx1p(x1,x2)dx2dx1yp(x1,zx1)dzy[p(x1,zx1)dx1]dz.
所以 Y Y Y的密度函数是 p Y ( y ) = ∫ − ∞ ∞ p ( x , y − x ) d x p_Y(y)=\int_{-\infty}^\infty p(x,y-x)dx pY(y)=p(x,yx)dx

对于 Y = X 1 / X 2 Y=X_1/X_2 Y=X1/X2,要区分 X 2 X_2 X2符号,它的分布函数是
F Y ( y ) = ∬ x 1 / x 2 ≤ y p ( x 1 , x 2 ) d x 1 d x 2 = ∫ 0 ∞ d x 2 ∫ − ∞ y x 2 p ( x 1 , x 2 ) d x 1 + ∫ − ∞ 0 d x 2 ∫ y x 2 ∞ p ( x 1 , x 2 ) d x 1 = z = x 1 / x 2 x 1 = z x 2 ∫ 0 ∞ d x 2 ∫ − ∞ y p ( z x 2 , x 2 ) x 2 d z + ∫ − ∞ 0 d x 2 ∫ y − ∞ p ( z x 2 , x 2 ) x 2 d z = ∫ − ∞ y [ ∫ 0 ∞ p ( z x 2 , x 2 ) x 2 d x 2 − ∫ − ∞ 0 p ( z x 2 , x 2 ) x 2 d x 2 ] d z . \begin{aligned} F_Y(y)=&\iint\limits_{x_1/x_2\le y}p(x_1,x_2)dx_1dx_2\\ =&\int_0^{\infty }dx_2\int_{-\infty }^{yx_2}p(x_1,x_2)dx_1+\int_{-\infty }^0dx_2\int_{yx_2}^\infty p(x_1,x_2)dx_1\\ \xlongequal[z=x_1/x_2]{x_1=zx_2}&\int_0^\infty dx_2 \int_{-\infty }^y p(zx_2,x_2)x_2dz+\int_{-\infty}^0 dx_2 \int_{y}^{-\infty} p(zx_2,x_2)x_2dz\\ =&\int_{-\infty }^y \left[ \int_0^\infty p(zx_2,x_2)x_2dx_2-\int_{-\infty}^0 p(zx_2,x_2)x_2 dx_2\right]dz. \end{aligned} FY(y)==x1=zx2 z=x1/x2=x1/x2yp(x1,x2)dx1dx20dx2yx2p(x1,x2)dx1+0dx2yx2p(x1,x2)dx10dx2yp(zx2,x2)x2dz+0dx2yp(zx2,x2)x2dzy[0p(zx2,x2)x2dx20p(zx2,x2)x2dx2]dz.
所以 Y Y Y的密度函数为 p Y ( y ) = [ ∫ 0 ∞ p ( z x , x ) x d x − ∫ − ∞ 0 p ( z x , x ) x d x ] = ∫ − ∞ ∞ p ( z x , x ) ∣ x ∣ d x p_Y(y)=[\int_0^\infty p(zx,x)xdx-\int_{-\infty}^0 p(zx,x)xdx]=\int_{-\infty}^\infty p(zx,x)|x|dx pY(y)=[0p(zx,x)xdx0p(zx,x)xdx]=p(zx,x)xdx

3.随机向量的变换

现有两个等长随机向量 ( X 1 , ⋯   , X n ) , ( Y 1 , ⋯   , Y n ) (X_1,\cdots,X_n),(Y_1,\cdots,Y_n) (X1,,Xn),(Y1,,Yn),如果存在一族函数 f 1 , ⋯   , f n f_1,\cdots,f_n f1,,fn使得 Y i = f i ( X 1 , ⋯   , X n ) Y_i=f_i(X_1,\cdots,X_n) Yi=fi(X1,,Xn),则称为随机向量的变换。离散型的依然是简单的分布列,现在还是讨论连续情形。

已知 ( X 1 , ⋯   , X n ) (X_1,\cdots,X_n) (X1,,Xn)的密度函数是 p ( x 1 , ⋯   , x n ) p(x_1,\cdots,x_n) p(x1,,xn),要求 ( Y 1 , ⋯   , Y n ) (Y_1,\cdots,Y_n) (Y1,,Yn)的联合密度 q ( y 1 , ⋯   , y n ) q(y_1,\cdots,y_n) q(y1,,yn),首先对于函数变换要有唯一的反函数组
{ y 1 = f 1 ( x 1 , ⋯   , x n ) ⋮ y n = f n ( x 1 , ⋯   , x n ) ⇒ { x 1 = g 1 ( y 1 , ⋯   , y n ) ⋮ x n = g n ( y 1 , ⋯   , y n ) , \left\{ \begin{array}l y_1=f_1(x_1,\cdots,x_n)\\ \vdots\\ y_n=f_n(x_1,\cdots,x_n) \end{array} \right.\Rightarrow \left\{ \begin{array}l x_1=g_1(y_1,\cdots,y_n)\\ \vdots\\ x_n=g_n(y_1,\cdots,y_n) \end{array} \right., y1=f1(x1,,xn)yn=fn(x1,,xn)x1=g1(y1,,yn)xn=gn(y1,,yn),

J = ∂ ( x 1 , ⋯   , x n ) ∂ ( y 1 , ⋯   , y n ) = ∣ ∂ x 1 ∂ y 1 ∂ x 1 ∂ y 2 ⋯ ∂ x 1 ∂ x n ∂ x 2 ∂ y 1 ∂ x 2 ∂ y 2 ⋯ ∂ x 2 ∂ y 2 ⋮ ⋮ ⋱ ⋮ ∂ x n ∂ y 1 ∂ x n ∂ y 2 ⋯ ∂ x n ∂ y n ∣ . J=\frac{\partial(x_1,\cdots,x_n)}{\partial (y_1,\cdots,y_n)}=\left| \begin{matrix} \frac{\partial x_1}{\partial y_1}&\frac{\partial x_1}{\partial y_2}&\cdots&\frac{\partial x_1}{\partial x_n}\\ \frac{\partial x_2}{\partial y_1}&\frac{\partial x_2}{\partial y_2}&\cdots&\frac{\partial x_2}{\partial y_2}\\ \vdots&\vdots&\ddots&\vdots\\ \frac{\partial x_n}{\partial y_1}&\frac{\partial x_n}{\partial y_2}&\cdots&\frac{\partial x_n}{\partial y_n} \end{matrix} \right|. J=(y1,,yn)(x1,,xn)=y1x1y1x2y1xny2x1y2x2y2xnxnx1y2x2ynxn.
则有
q ( y 1 , ⋯   , y n ) = p ( g 1 ( y 1 , ⋯   , y n ) , ⋯   , g n ( x 1 , ⋯   , x n ) ) ∣ J ∣ ; q(y_1,\cdots,y_n)=p\left(g_1(y_1,\cdots,y_n),\cdots,g_n(x_1,\cdots,x_n)\right)|J|; q(y1,,yn)=p(g1(y1,,yn),,gn(x1,,xn))J;
也可简记为
q ( y 1 , ⋯   , y n ) ∣ ∂ ( y 1 , ⋯   , y n ) ∣ = p ( x 1 , ⋯   , x n ) ∣ ∂ ( x 1 , ⋯   , x n ) ∣ . q(y_1,\cdots,y_n)|\partial (y_1,\cdots,y_n)|=p(x_1,\cdots,x_n)|\partial (x_1,\cdots,x_n)|. q(y1,,yn)(y1,,yn)=p(x1,,xn)(x1,,xn).
如果反函数组不止一个,也和一维随机变量变换类似,将所有情况直接加起来即可。

随机向量的变换是非常重要的工具,它可以用来求复杂随机变量的分布函数,即通过构造另外的辅助随机变量,通过随机向量变换求得联合分布,再对其辅助随机变量积分,得到复杂随机变量的边际分布。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值