08.第三章 数字特征与特征函数(1)

第三章 数字特征与特征函数(1)

1.随机变量的期望求算

随机变量将样本点映射到实数,也就是说随机变量的取值总是一族数,这些数对应着不同的概率,那么它们的聚集情况就有一定的特征来刻画。数学期望就是刻画这些数的聚集中心的数字特征,一般地对随机变量 X X X,分布函数为 F ( x ) F(x) F(x),定义 X X X的数学期望为(此处可跳过至具体两种情况)
∫ − ∞ ∞ x d F ( x ) = ∑ i = 1 N x i [ F ( x i ) − F ( x i − 1 ) ] . \int_{-\infty}^\infty xdF(x)=\sum_{i=1}^N x_i[F(x_i)-F(x_{i-1})]. xdF(x)=i=1Nxi[F(xi)F(xi1)].
这种积分称为Stieltjes积分,这里 − ∞ = x 0 < x 1 < ⋯ < x N = ∞ -\infty =x_0<x_1<\cdots<x_N=\infty =x0<x1<<xN=,且必须满足绝对可积,也就是 ∫ − ∞ ∞ ∣ x ∣ d F ( x ) < ∞ \int_{-\infty}^\infty |x|dF(x)<\infty xdF(x)<

当然,看起来这不是一个好计算的积分,一是除了连续函数的分布函数是绝对可积的外,其他函数的分布函数并不一定有很好的性质;二是这样一个复杂的求和式的求算是十分复杂的,一般我们将合式转化为积分计算,反其道而行之显然会造成很多不便。

绕开一般的随机变量,只取其中特殊的两种——离散型随机变量、连续型随机变量考虑,它们的分布分别可以由概率分布列和概率密度函数来刻画,自然会考虑将它们的期望转化为关于分布列、密度的表达式。

首先是离散型随机变量,回顾它的形状(阶梯型),除了少数几个点外都是常数,因此 F ( x ) − F ( x − Δ x ) = 0 F(x)-F(x-\Delta x)=0 F(x)F(xΔx)=0对于一般的 x x x是成立的。不成立点在哪里呢?显然在于那几个可取值的点,即 x 1 , ⋯   , x n , p ( x i ) > 0 x_1,\cdots,x_n,p(x_i)>0 x1,,xn,p(xi)>0。由于
F ( x i ) = P ( X ≤ x i ) ≠ P ( X < x i ) = F ( x i − 0 ) , F(x_i)=P(X\le x_i)\neq P(X<x_i)=F(x_i-0), F(xi)=P(Xxi)=P(X<xi)=F(xi0),
所以在几个点 x i x_i xi处,有 F ( x i ) − F ( x i − 0 ) = p i F(x_i)-F(x_i-0)=p_i F(xi)F(xi0)=pi,因此我们得到离散型随机变量的数学期望表达式
E X = ∑ i = 1 ∞ x i p i , p i > 0. EX=\sum_{i=1}^\infty x_i p_i,\quad p_i>0. EX=i=1xipi,pi>0.
当然,也要满足绝对可积条件 ∑ i = 1 ∞ ∣ x i ∣ p i < ∞ \sum\limits_{i=1}^\infty |x_i|p_i<\infty i=1xipi<

对于连续型随机变量,由于 p ( x i ) = lim ⁡ x i − x i − 1 → 0 F ( x i ) − F ( x i − 1 ) x i − x i − 1 p(x_i)=\lim\limits_{x_i-x_{i-1}\to 0}\frac{F(x_i)-F(x_{i-1})}{x_i-x_{i-1}} p(xi)=xixi10limxixi1F(xi)F(xi1),所以可以直接作变换,得到
E X = ∑ i = 1 N x i F ( x i ) − F ( x i − 1 ) x i − x i − 1 ( x i − x i − 1 ) = ∑ i = 1 N x i p ( x i ) [ x i − x i − 1 ] = ∫ − ∞ ∞ x p ( x ) d x . \begin{aligned} EX=&\sum_{i=1}^Nx_i\frac{F(x_i)-F(x_{i-1})}{x_i-x_{i-1}}(x_i-x_{i-1})\\ =&\sum_{i=1}^N x_i p(x_i)[x_i-x_{i-1}]\\ =&\int_{-\infty}^\infty xp(x)dx. \end{aligned} EX===i=1Nxixixi1F(xi)F(xi1)(xixi1)i=1Nxip(xi)[xixi1]xp(x)dx.
而绝对可积的条件,就转化为 ∫ − ∞ ∞ ∣ x ∣ p ( x ) d x < ∞ \int_{-\infty}^\infty |x|p(x)dx<\infty xp(x)dx<

综上所述,我们一般使用如下的两个公式来分别求离散型、连续型的随机变量期望:
E X = ∑ i = 1 ∞ x i p i , 或 E X = ∫ − ∞ ∞ x p ( x ) d x . EX=\sum_{i=1}^\infty x_ip_i,或EX=\int_{-\infty}^\infty xp(x)dx. EX=i=1xipi,EX=xp(x)dx.
注意到,对于离散情形,数学期望就是各个取值关于它们概率的加权平均;而对于连续情形,密度函数也是概率在每点处取值的相对大小,也可以看成一种连续的加权平均。因此,数学期望反映的就是随机变量的平均水平,因此也叫均值

那么非离散、连续型数学期望,比如给定一个分布函数 F ( x ) F(x) F(x),它又不是连续的又不是阶梯型的,应当如何求算它的数学期望?用求和式不实际,于是考虑对Stieltjes积分作一些变形。

首先对于Stieltjes积分,它可以跟分布函数联系在一起,由积分和微分的互为逆运算性,有
F ( x ) = ∫ − ∞ x d F ( t ) = P ( X ≤ x ) F(x)=\int_{-\infty}^x dF(t)=P(X\le x) F(x)=xdF(t)=P(Xx)
这里 X ≤ x X\le x Xx是一个Borel集,那么由Borel集的构造,一切集合都可以类似表示在积分号上,所以有
P ( X ∈ B ) = ∫ x ∈ B d F ( x ) . P(X\in B)=\int_{x\in B}dF(x). P(XB)=xBdF(x).
然后对数学期望的式子进行改造,由绝对可积性可以把积分拆成正负两部分,得到
E X = ∫ − ∞ ∞ x d F ( x ) = ∫ 0 ∞ x d F ( x ) + ∫ − ∞ 0 x d F ( x ) = ∫ 0 ∞ ∫ 0 x d t d F ( x ) − ∫ − ∞ 0 ∫ x 0 d t d F ( x ) = ∫ 0 ∞ d t ∫ t ∞ d F ( x ) + ∫ − ∞ 0 ∫ − ∞ t d F ( x ) d t = ∫ 0 ∞ P ( X > t ) d t + ∫ − ∞ 0 P ( X < t ) d t . \begin{aligned} EX=&\int_{-\infty}^\infty xdF(x)\\ =&\int_{0}^\infty xdF(x)+\int_{-\infty}^0xdF(x)\\ =&\int_0^\infty \int_0^x dtdF(x)-\int_{-\infty}^0 \int_x^0 dtdF(x)\\ =&\int_0^\infty dt\int_t^\infty dF(x)+\int_{-\infty}^0\int_{-\infty}^t dF(x)dt\\ =&\int_0^\infty P(X>t)dt+\int_{-\infty}^0 P(X<t)dt. \end{aligned} EX=====xdF(x)0xdF(x)+0xdF(x)00xdtdF(x)0x0dtdF(x)0dttdF(x)+0tdF(x)dt0P(X>t)dt+0P(X<t)dt.
因此,在概率分布列或密度函数求算不是那么方便,而分布函数已知时,可以利用这个公式来求随机变量的期望,这就解决了非离散、连续型随机变量数学期望的求算。

  • 这里重要的是积分区域的变换。
  • 如果给定的随机变量只是正值的,则可以舍弃后面那一项。

另外,还有重要的随机变量函数,它的数学期望求取却十分简单。现依然假设 X X X的分布函数为 F ( x ) F(x) F(x),有概率分布列 p i p_i pi或密度函数 p ( x ) p(x) p(x),对于随机变量函数 Y = f ( X ) Y=f(X) Y=f(X),它的数学期望就是
E Y = ∫ − ∞ ∞ f ( x ) d F ( x ) = { ∑ i = 1 ∞ f ( x i ) p i , X 离 散 ; ∫ − ∞ ∞ f ( x ) p ( x ) d x , X 连 续 . EY=\int_{-\infty}^\infty f(x)dF(x)=\left\{ \begin{array}l \sum\limits_{i=1}^\infty f(x_i)p_i,&X离散;\\ \int_{-\infty}^\infty f(x)p(x)dx,&X连续. \end{array} \right. EY=f(x)dF(x)=i=1f(xi)pi,f(x)p(x)dx,X;X.
这个结论直接记忆即可,就是用随机变量函数的函数部分,直接套到原积分内 X X X的位置。当然,如果 p ( x ) p(x) p(x)不太好积分,而 Y Y Y的密度函数在求取后却有着简洁好积的形式,也可以直接用 Y Y Y的密度求。

2.随机向量的期望求算

随机向量与随机变量的期望形式上是类似的,设 ( X , Y ) (X,Y) (X,Y)的联合分布函数是 F ( x , y ) F(x,y) F(x,y),且具有联合密度函数 p ( x , y ) p(x,y) p(x,y)(离散型可以直接类比一维,就不讨论了)。我们可以先求出其边际分布 F X ( x ) , F Y ( y ) F_X(x),F_Y(y) FX(x),FY(y)从而分别确定 X , Y X,Y X,Y的期望,但对于 X , Y X,Y X,Y的期望,我们更愿意将其看成一种随机向量函数
g ( X , Y ) = X , h ( X , Y ) = Y . g(X,Y)=X,\quad h(X,Y)=Y. g(X,Y)=X,h(X,Y)=Y.
这样,如果我们能推出一般随机变量函数 f ( X , Y ) f(X,Y) f(X,Y)的期望,就可以一举解决所有相关的问题。好在,随机向量函数的期望具有和随机变量函数期望类似的形式,即
E f ( X , Y ) = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y ) d F ( x , y ) = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y ) p ( x , y ) d x d y . Ef(X,Y)=\int_{-\infty}^\infty \int_{-\infty}^\infty f(x,y)dF(x,y)=\int_{-\infty}^\infty \int_{-\infty}^\infty f(x,y)p(x,y)dxdy. Ef(X,Y)=f(x,y)dF(x,y)=f(x,y)p(x,y)dxdy.
这样就可以不求边际分布,直接求得每一个分量的期望,以及其他随机向量函数的数学期望。

3.数学期望的性质

数学期望具有一系列实用的性质,其中以线性计算相关性质最为重要。

  1. 有界性:若 a ≤ ξ ≤ b a\le \xi \le b aξb,则 E ξ E\xi Eξ存在且 a ≤ E ξ ≤ b a\le E\xi \le b aEξb。如果 ξ ≤ η \xi\le\eta ξη,则有 E ξ ≤ E η E\xi \le E\eta EξEη

    注意两个随机变量之间的大小关系是不好对比的,一般只能说明 ξ < ξ + 1 \xi<\xi+1 ξ<ξ+1这种显然的关系。

  2. 线性性质:若 E ξ 1 , ⋯   , E ξ n E\xi_1,\cdots,E\xi_n Eξ1,,Eξn都存在,则对于任意常数 b , c 1 , ⋯   , c n b,c_1,\cdots,c_n b,c1,,cn,有
    E ( ∑ i = 1 n c i ξ i + b ) = ∑ i = 1 n c i E ξ i + b . E(\sum_{i=1}^n c_i\xi_i+b)=\sum_{i=1}^nc_iE\xi_i+b. E(i=1nciξi+b)=i=1nciEξi+b.
    将此性质拆分,可以得到 E ( X + Y ) = E X + E Y , E ( c X ) = c E X E(X+Y)=EX+EY,E(cX)=cEX E(X+Y)=EX+EY,E(cX)=cEX,这就是数学期望的线性计算性质。

  3. 独立可拆分性:若 X , Y X,Y X,Y独立,则 E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)

  4. 有界收敛定理:对一列随机变量 ξ 1 , ⋯   , ξ n , ⋯ \xi_1,\cdots,\xi_n,\cdots ξ1,,ξn,与目标随机变量 ξ \xi ξ,如果对于任意样本点 ω \omega ω,都有 lim ⁡ n → ∞ ξ n ( ω ) = ξ ( ω ) \lim\limits_{n\to \infty}\xi_n(\omega)=\xi(\omega) nlimξn(ω)=ξ(ω),且对一切 n ≥ 1 n\ge 1 n1 ∣ ξ n ∣ ≤ M |\xi_n|\le M ξnM,这里 M M M为常数,则有
    lim ⁡ n → ∞ E ξ n = E ξ . \lim_{n\to \infty} E\xi_n=E\xi. nlimEξn=Eξ.
    这个定理给出了随机变量期望收敛的一个条件:随机变量列是有界的。如果把 M M M改成一个数学期望存在的非负随机变量 η \eta η,则 ξ n \xi_n ξn的数学期望依然收敛于 E ξ E\xi Eξ,这就是控制收敛定理

4.条件期望

条件期望针对条件分布而言,既然随机变量可以具有条件分布,那么把条件分布看成分布函数就能够推出条件期望。如果 X = x X=x X=x的情况下 Y Y Y的条件分布为 F Y ∣ X ( y ∣ x ) F_{Y|X}(y|x) FYX(yx),则条件期望就是
E ( Y ∣ X = x ) = ∫ ∞ ∞ y d F Y ∣ X ( y ∣ x ) . E(Y|X=x)=\int_{\infty}^\infty ydF_{Y|X}(y|x). E(YX=x)=ydFYX(yx).
在给定 x x x的情况下,可以看到条件期望是一个数值,那么当 x x x可以任意给定时, E ( Y ∣ X = x ) E(Y|X=x) E(YX=x)就可以看作一个关于 x x x的函数,记作 m ( x ) m(x) m(x)。然而,在很多情况下,我们没法给定 x x x的具体值——因为 X X X本身也是随机变量,具有自己的分布。那么 m ( X ) m(X) m(X)实际上也是一个随机变量 X X X取定值时 m ( X ) m(X) m(X)随之确定),它的期望有什么特点?仅考虑 ( X , Y ) (X,Y) (X,Y)是连续的,具有联合密度 p ( x , y ) p(x,y) p(x,y),那么
E m ( X ) = ∫ − ∞ ∞ m ( x ) p X ( x ) d x = ∫ − ∞ ∞ ( ∫ − ∞ ∞ y p Y ∣ X ( y ∣ x ) d y ) p X ( x ) d x = ∫ − ∞ ∞ ∫ − ∞ ∞ y ( p Y ∣ X ( y ∣ x ) p X ( x ) ) d x d y = ∫ − ∞ ∞ ∫ − ∞ ∞ y p ( x , y ) d x d y = E ( Y ) . \begin{aligned} Em(X)=&\int_{-\infty}^\infty m(x)p_X(x)dx\\ =&\int_{-\infty}^\infty \left(\int_{-\infty}^{\infty} yp_{Y|X}(y|x)dy \right)p_X(x)dx\\ =&\int_{-\infty}^\infty \int_{-\infty}^\infty y(p_{Y|X}(y|x)p_X(x))dxdy\\ =&\int_{-\infty}^\infty \int_{-\infty}^\infty y p(x,y)dxdy\\ =&E(Y). \end{aligned} Em(X)=====m(x)pX(x)dx(ypYX(yx)dy)pX(x)dxy(pYX(yx)pX(x))dxdyyp(x,y)dxdyE(Y).
也就是 E [ E ( Y ∣ X ) ] = E ( Y ) E[E(Y|X)]=E(Y) E[E(YX)]=E(Y),这也被称为全期望公式。可以看到,全期望公式里 X X X Y Y Y没有什么约束,所以实际应用时 X X X可以根据情况选择。这个公式在求随机过程期望时很常用。

要注意,在取条件期望时,右边的 X X X是“暂时地”被当成常数处理的,所以 E ( f ( X ) Y ∣ X ) = f ( X ) E ( Y ∣ X ) E(f(X)Y|X)=f(X)E(Y|X) E(f(X)YX)=f(X)E(YX)是成立的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值