【多元统计分析】08.协方差阵的假设检验

八、协方差阵的假设检验

上一篇笔记中讨论了均值向量的假设检验,本篇对多元正态分布的另一个参数假设检验作出讨论。关于协方差阵检验,适用的都是似然比检验法,其表现形式更为繁琐,记住取到似然函数最大值的参数会更方便。

1.单总体协方差阵的假设检验

假设有一个来自总体 N p ( μ , Σ ) N_p(\mu,\Sigma) Np(μ,Σ)的样本 X ( α ) ( α = 1 , ⋯   , n ) X_{(\alpha)}(\alpha=1,\cdots,n) X(α)(α=1,,n),只知道 Σ > 0 \Sigma>0 Σ>0但不知道其具体值,假设检验问题就是
H 0 : Σ = Σ 0 ( > 0 ) ⇔ H 1 : Σ ≠ Σ 0 . H_0:\Sigma=\Sigma_0(>0)\Leftrightarrow H_1:\Sigma \ne \Sigma_0. H0:Σ=Σ0(>0)H1:Σ=Σ0.
依然从最简单的情况入手, Σ 0 \Sigma_0 Σ0为单位阵 I p I_p Ip时,检验 H 0 : Σ = I p H_0:\Sigma=I_p H0:Σ=Ip问题。使用似然比检验法,构造似然比统计量为
λ = max ⁡ μ L ( μ , I p ) max ⁡ μ , Σ > 0 L ( μ , Σ ) . \lambda=\frac{\max_\mu L(\mu,I_p)}{\max_{\mu,\Sigma>0}L(\mu,\Sigma)}. λ=maxμ,Σ>0L(μ,Σ)maxμL(μ,Ip).
先写出似然函数为
L ( μ , Σ ) = 1 ( 2 π ) n p / 2 ∣ Σ ∣ n / 2 exp ⁡ { − 1 2 ∑ α = 1 n ( X ( α ) − μ ) ′ Σ − 1 ( X ( α ) − μ ) } , l ( μ , Σ ) = − n p 2 ln ⁡ ( 2 π ) + n 2 ln ⁡ ∣ Σ − 1 ∣ − 1 2 ∑ α = 1 n ( X ( α ) − μ ) ′ Σ − 1 ( X ( α ) − μ ) . L(\mu,\Sigma)=\frac{1}{(2\pi)^{np/2}|\Sigma|^{n/2}}\exp\left\{-\frac12\sum_{\alpha=1}^n(X_{(\alpha)}-\mu)'\Sigma^{-1}(X_{(\alpha)}-\mu) \right\}, \\ l(\mu,\Sigma)=-\frac{np}2\ln (2\pi)+\frac n2\ln|\Sigma^{-1}|-\frac12\sum_{\alpha=1}^n(X_{(\alpha)}-\mu)'\Sigma^{-1}(X_{(\alpha)}-\mu). L(μ,Σ)=(2π)np/2Σn/21exp{21α=1n(X(α)μ)Σ1(X(α)μ)},l(μ,Σ)=2npln(2π)+2nlnΣ121α=1n(X(α)μ)Σ1(X(α)μ).
取对数似然,分别对 μ , Σ − 1 \mu,\Sigma^{-1} μ,Σ1求导得到
∂ l ∂ μ = Σ − 1 ∑ α = 1 n ( X ( α ) − μ ) , ∂ l ∂ Σ − 1 = n 2 Σ − 1 2 ∑ α = 1 n ( X ( α ) − μ ) ( X ( α ) − μ ) ′ . \frac{\partial l}{\partial \mu}=\Sigma^{-1}\sum_{\alpha=1}^n(X_{(\alpha)}-\mu),\\ \frac{\partial l}{\partial \Sigma^{-1}}=\frac n2\Sigma-\frac12\sum_{\alpha=1}^n(X_{(\alpha)}-\mu)(X_{(\alpha)}-\mu)'. μl=Σ1α=1n(X(α)μ),Σ1l=2nΣ21α=1n(X(α)μ)(X(α)μ).
分子取最大值时固定 Σ = I p = Σ − 1 \Sigma=I_p=\Sigma^{-1} Σ=Ip=Σ1 μ = X ˉ \mu=\bar X μ=Xˉ;分母取最大值时 μ = X ˉ , Σ = A / n \mu=\bar X,\Sigma=A/n μ=Xˉ,Σ=A/n,所以
λ = ( 2 π ) − n p / 2 ∣ I p ∣ − n / 2 exp ⁡ [ − 1 2 t r ( I p − 1 A ) ] ( 2 π ) − n p / 2 ( e / n ) − n p / 2 ∣ A ∣ − n / 2 = exp ⁡ { − 1 2 t r ( A ) } ∣ A ∣ n / 2 ( e n ) n p / 2 . \lambda=\frac{(2\pi)^{-np/2}|I_p|^{-n/2}\exp[-\frac12{\rm tr}(I_p^{-1}A)]}{(2\pi)^{-np/2}(e/n)^{-np/2}|A|^{-n/2}}=\exp\left\{-\frac12{\rm tr}(A) \right\}|A|^{n/2}\left(\frac en \right)^{np/2}. λ=(2π)np/2(e/n)np/2An/2(2π)np/2Ipn/2exp[21tr(Ip1A)]=exp{21tr(A)}An/2(ne)np/2.

以上等式成立,是因为
exp ⁡ { − 1 2 ∑ α = 1 n ( X ( α ) − μ ) ′ ( A n ) − 1 ( X ( α ) − μ ) } = exp ⁡ { − 1 2 t r ( ∑ α = 1 n ( X ( α ) − μ ) ′ A − 1 n ( X ( α ) − μ ) ) } = exp ⁡ { − n 2 t r ( A − 1 A ) } = e − n p 2 . \begin{aligned} & \exp\left\{-\frac12\sum_{\alpha=1}^n(X_{(\alpha)}-\mu)'\left(\frac{A}{n}\right)^{-1}(X_{(\alpha)}-\mu) \right\} \\ =& \exp\left\{-\frac12{\rm tr}\left(\sum_{\alpha=1}^n (X_{(\alpha)}-\mu)'A^{-1}n(X_{(\alpha)}-\mu) \right) \right\}\\ =&\exp\left\{-\frac n2{\rm tr}\left(A^{-1}A \right) \right\} \\ =&e^{-\frac {np}2}. \end{aligned} ===exp{21α=1n(X(α)μ)(nA)1(X(α)μ)}exp{21tr(α=1n(X(α)μ)A1n(X(α)μ))}exp{2ntr(A1A)}e2np.
这个似然比检验统计量的形式比较复杂,不适合化成多元三大分布或者化成一元三大分布,所以是用似然比检验的近似,构造 ξ = − 2 ln ⁡ λ \xi =-2\ln \lambda ξ=2lnλ,即
ξ = t r ( A ) − n ln ⁡ ∣ A ∣ − n p + n p ln ⁡ n . \xi={\rm tr}(A)-n\ln |A|-np+np\ln n. ξ=tr(A)nlnAnp+nplnn.
n → ∞ n\to \infty n时, ξ \xi ξ渐进 χ 2 ( f ) \chi^2(f) χ2(f)分布, f f f是分母、分子的参数空间维数之差,这里分子的参数空间是 p p p维的(均值向量),分母的参数空间是 p + p ( p + 1 ) 2 p+\frac{p(p+1)}2 p+2p(p+1)维的(均值向量与对称的自协方差阵),所以 f = p ( p + 1 ) 2 f=\frac{p(p+1)}2 f=2p(p+1),即
ξ = t r ( A ) − n ln ⁡ ∣ A ∣ + n p ( ln ⁡ n − 1 ) → χ 2 ( p ( p + 1 ) 2 ) . \xi={\rm tr}(A)-n\ln |A|+np(\ln n-1)\to \chi^2\left(\frac{p(p+1)}{2} \right). ξ=tr(A)nlnA+np(lnn1)χ2(2p(p+1)).
对稍复杂的情况,检验 H 0 : Σ = Σ 0 ≠ I p H_0:\Sigma=\Sigma_0\ne I_p H0:Σ=Σ0=Ip,自然而然地我们会想到使用一个线性变换,将 Σ 0 \Sigma_0 Σ0的检验转化成 I p I_p Ip的检验。因为 Σ 0 > 0 \Sigma_0>0 Σ0>0即对称可逆,所以存在正交阵 Γ \Gamma Γ使得 Γ Σ 0 Γ ′ = Λ = Λ 1 / 2 I p Λ 1 / 2 \Gamma \Sigma_0\Gamma'=\Lambda=\Lambda^{1/2}I_p\Lambda^{1/2} ΓΣ0Γ=Λ=Λ1/2IpΛ1/2,所以必定存在可逆阵 D = Γ Λ − 1 / 2 D=\Gamma\Lambda^{-1/2} D=ΓΛ1/2使得 D Σ 0 D ′ = I p D\Sigma_0D'=I_p DΣ0D=Ip。因此,我们令 Y ( α ) = D X ( α ) Y_{(\alpha)}=DX_{(\alpha)} Y(α)=DX(α),就有 Y ( α ) ∼ N ( D μ , D Σ D ′ ) Y_{(\alpha)}\sim N(D\mu,D\Sigma D') Y(α)N(Dμ,DΣD),这样假设检验变成了 H 0 : Σ = Σ 0 ⇔ D Σ D ′ = I p H_0:\Sigma=\Sigma_0\Leftrightarrow D\Sigma D'=I_p H0:Σ=Σ0DΣD=Ip

在这样的变换下,令 Y ( α ) Y_{(\alpha)} Y(α)的样本均值为 Y ˉ \bar Y Yˉ,离差阵为 A ∗ A^* A,则似然比检验统计量为
λ = exp ⁡ { − 1 2 t r ( A ∗ ) } ∣ A ∗ ∣ n / 2 ( e n ) n p / 2 = exp ⁡ { − 1 2 t r ( D A D ′ ) } ∣ D A D ′ ∣ n / 2 ( e n ) n p / 2 = exp ⁡ { − 1 2 t r ( A D D ′ ) } ∣ A D D ′ ∣ n / 2 ( e n ) n p / 2 = exp ⁡ { − 1 2 t r ( A Σ 0 − 1 ) } ∣ A Σ 0 − 1 ∣ n / 2 ( e n ) n p / 2 . \begin{aligned} \lambda=& {\exp}\left\{-\frac12{\rm tr}(A^*) \right\}|A^*|^{n/2}\left(\frac en \right)^{np/2} \\ =& \exp\left\{-\frac12{\rm tr}(DAD') \right\}|DAD'|^{n/2}\left(\frac en \right)^{np/2} \\ =&\exp\left\{-\frac12{\rm tr}(ADD') \right\}|ADD'|^{n/2}\left(\frac en \right)^{np/2} \\ =& \exp\left\{-\frac12{\rm tr }(A\Sigma_0^{-1}) \right\}|A\Sigma_0^{-1}|^{n/2}\left(\frac en \right)^{np/2}. \end{aligned} λ====exp{21tr(A)}An/2(ne)np/2exp{21tr(DAD)}DADn/2(ne)np/2exp{21tr(ADD)}ADDn/2(ne)np/2exp{21tr(AΣ01)}AΣ01n/2(ne)np/2.
其近似为
ξ = − 2 ln ⁡ λ = − 1 2 t r ( A Σ 0 − 1 ) − n ln ⁡ ∣ A Σ 0 − 1 ∣ + n p ( ln ⁡ n − 1 ) → χ 2 ( p ( p + 1 ) 2 ) . \xi=-2\ln\lambda=-\frac12{\rm tr}(A\Sigma_0^{-1})-n\ln|A\Sigma_0^{-1}|+np(\ln n-1)\to \chi^2\left(\frac{p(p+1)}2 \right). ξ=2lnλ=21tr(AΣ01)nlnAΣ01+np(lnn1)χ2(2p(p+1)).
可以看到,在最终的检验统计量中并不含有变换矩阵 D D D,所以在应用上还是十分方便的。

2.特殊的单总体协方差阵检验——球性检验

球性检验,指的是以下这种检验问题: H 0 : Σ = σ 2 I p H_0:\Sigma=\sigma^2I_p H0:Σ=σ2Ip,这里 σ 2 \sigma^2 σ2是未知的量;一般地,我们对以下问题进行假设检验: H 0 : Σ = σ 2 Σ 0 H_0:\Sigma=\sigma^2\Sigma_0 H0:Σ=σ2Σ0,依然适用似然比检验法。此时,对于分子,有
L ( μ , σ 2 Σ 0 ) = 1 ( 2 π ) n p / 2 ∣ Σ 0 ∣ n / 2 σ 2 ( n p / 2 ) exp ⁡ { − 1 2 ∑ α = 1 n ( X ( α ) − μ ) ′ ( σ 2 Σ 0 ) − 1 ( X ( α ) − μ ) } , = C ⋅ 1 ( σ 2 ) n p / 2 exp ⁡ { − 1 2 t r ( ∑ α = 1 n ( X ( α ) − μ ) ′ Σ 0 − 1 σ 2 ( X ( α ) − μ ) ) } = C ( σ 2 ) n p / 2 exp ⁡ { − 1 2 ( σ 2 ) t r ( Σ 0 − 1 ∑ α = 1 n ( X ( α ) − μ ) ( X ( α ) − μ ) ′ ) } l ( μ , σ 2 Σ 0 ) = C ′ − n p 2 ln ⁡ ( σ 2 ) − 1 2 ( σ 2 ) t r ( Σ 0 − 1 ∑ α = 1 n ( X ( α ) − μ ) ( X ( α ) − μ ) ′ ) \begin{aligned} L(\mu,\sigma^2\Sigma_0)=&\frac 1{(2\pi)^{np/2}|\Sigma_0|^{n/2}{\sigma^2}^{(np/2)}}\exp\left\{-\frac12\sum_{\alpha=1}^n(X_{(\alpha)}-\mu)'(\sigma^2\Sigma_0)^{-1}(X_{(\alpha)}-\mu) \right\},\\ = & C\cdot \frac{1}{(\sigma^2)^{np/2}}\exp\left\{-\frac12{\rm tr}\left(\sum_{\alpha=1}^n(X_{(\alpha)}-\mu)'\frac{\Sigma_0^{-1}}{\sigma^2}(X_{(\alpha)}-\mu) \right) \right\}\\ =&\frac{C}{(\sigma^2)^{np/2}}\exp\left\{-\frac{1}{2(\sigma^2)}{\rm tr}\left( \Sigma_0^{-1}\sum_{\alpha=1}^n(X_{(\alpha)}-\mu)(X_{(\alpha)}-\mu)' \right) \right\} \\ l(\mu,\sigma^2\Sigma_0)=&C'-\frac{np}{2}\ln (\sigma^2)-\frac{1}{2(\sigma^2)}{\rm tr}\left(\Sigma_0^{-1}\sum_{\alpha=1}^n(X_{(\alpha)}-\mu)(X_{(\alpha)}-\mu)' \right) \end{aligned} L(μ,σ2Σ0)===l(μ,σ2Σ0)=(2π)np/2Σ0n/2σ2(np/2)1exp{21α=1n(X(α)μ)(σ2Σ0)1(X(α)μ)},C(σ2)np/21exp{21tr(α=1n(X(α)μ)σ2Σ01(X(α)μ))}(σ2)np/2Cexp{2(σ2)1tr(Σ01α=1n(X(α)μ)(X(α)μ))}C2npln(σ2)2(σ2)1tr(Σ01α=1n(X(α)μ)(X(α)μ))
这里第一行到第二行,用到标量的迹仍然是标量本身,第二行到第三行运用了迹运算的可交换性。对 μ \mu μ求导得到 μ = X ˉ \mu=\bar X μ=Xˉ,再带入后将 l ( μ , σ 2 Σ 0 ) l(\mu,\sigma^2\Sigma_0) l(μ,σ2Σ0) σ 2 \sigma^2 σ2求导,有
0 = − n p 2 1 σ 2 + t r ( Σ 0 − 1 A ) 2 1 ( σ 2 ) 2 , 0=-\frac{np}{2}\frac{1}{\sigma^2}+\frac{{\rm tr}(\Sigma_0^{-1}A)}{2}\frac{1}{(\sigma^2)^{2}}, 0=2npσ21+2tr(Σ01A)(σ2)21,
所以
σ ^ 2 = t r ( Σ 0 − 1 A ) n p . \hat \sigma^2=\frac{{\rm tr}(\Sigma_0^{-1}A)}{np}. σ^2=nptr(Σ01A).
此时,似然比检验量的分子为
1 ( 2 π ) n p / 2 ∣ σ ^ 2 Σ 0 ∣ n / 2 exp ⁡ { − 1 2 σ ^ 2 t r ( Σ 0 − 1 A ) } = ( 2 π ) − n p / 2 ∣ Σ 0 ∣ − n / 2 ( t r ( Σ 0 − 1 A ) n p ) − n p / 2 exp ⁡ { − n p 2 t r ( Σ 0 − 1 A ) ⋅ t r ( Σ 0 − 1 A ) } = ( 2 π ) − n p / 2 ∣ Σ 0 ∣ − n / 2 ( t r ( Σ 0 − 1 A ) / n p ) − n p / 2 e − n p / 2 . \begin{aligned} & \frac{1}{(2\pi)^{np/2}|\hat\sigma^2\Sigma_0|^{n/2}}\exp\left\{-\frac1{2\hat\sigma^2}{\rm tr}(\Sigma_0^{-1}A) \right\} \\ =&(2\pi)^{-np/2}|\Sigma_0|^{-n/2}\left(\frac{{\rm tr}(\Sigma_0^{-1}A)}{np} \right)^{-np/2}\exp\left\{-\frac{np}{2{\rm tr}(\Sigma_0^{-1}A)}\cdot{\rm tr}(\Sigma_0^{-1}A) \right\} \\ =&(2\pi)^{-np/2}|\Sigma_0|^{-n/2}({\rm tr}(\Sigma_0^{-1}A)/np)^{-np/2}e^{-np/2}. \end{aligned} ==(2π)np/2σ^2Σ0n/21exp{2σ^21tr(Σ01A)}(2π)np/2Σ0n/2(nptr(Σ01A))np/2exp{2tr(Σ01A)nptr(Σ01A)}(2π)np/2Σ0n/2(tr(Σ01A)/np)np/2enp/2.
而分母依然是 ( 2 π ) − n p / 2 ( e / n ) − n p / 2 ∣ A ∣ n / 2 (2\pi)^{-np/2}(e/n)^{-np/2}|A|^{n/2} (2π)np/2(e/n)np/2An/2,所以似然比统计量为
λ = ∣ Σ 0 − 1 A ∣ n / 2 [ t r ( Σ 0 − 1 A ) / p ] n p / 2 , − 2 ln ⁡ λ = n p ln ⁡ ( t r ( Σ 0 − 1 A ) p ) − n ln ⁡ ∣ Σ 0 − 1 A ∣ → χ 2 ( p ( p + 1 ) 2 − 1 ) . \lambda=\frac{|\Sigma_0^{-1}A|^{n/2}}{[{\rm tr}(\Sigma_0^{-1}A)/p]^{np/2}},\\ -2\ln \lambda =np\ln\left(\frac{{\rm tr}(\Sigma_0^{-1}A)}{p} \right)-n\ln |\Sigma_0^{-1}A|\to \chi^2\left(\frac{p(p+1)}{2}-1 \right). λ=[tr(Σ01A)/p]np/2Σ01An/2,2lnλ=npln(ptr(Σ01A))nlnΣ01Aχ2(2p(p+1)1).

3.多总体协方差阵的检验

回想我们在多总体均值假设检验时,总给定一个前提,即这些总体是同协方差矩阵的,但实际上,这些总体是否真的是同协方差矩阵的还有待商榷,所以,多总体协方差阵检验也是很重要的一个假设检验问题。现在有 k k k个总体 N p ( μ ( t ) , Σ t ) ( t = 1 , ⋯   , k ) N_p(\mu^{(t)},\Sigma_t)(t=1,\cdots,k) Np(μ(t),Σt)(t=1,,k),第 t t t个总体中有 n t n_t nt个样本 X ( α ) ( k ) ( α = 1 , ⋯   , n t ) X_{(\alpha)}^{(k)}(\alpha=1,\cdots,n_t) X(α)(k)(α=1,,nt) ∑ t = 1 k n t = n \sum_{t=1}^k n_t=n t=1knt=n,我们要检验的假设是
H 0 : Σ 1 = ⋯ = Σ k = d e f Σ ⇔ H 1 : Σ 1 , ⋯   , Σ k 不 全 相 等 . H_0:\Sigma_1=\cdots =\Sigma_k\stackrel {\rm def}=\Sigma\Leftrightarrow H_1:\Sigma_1,\cdots,\Sigma_k不全相等. H0:Σ1==Σk=defΣH1:Σ1,,Σk.
依然适用似然比检验,似然函数和似然比统计量为
L ( μ ( 1 ) , Σ 1 , ⋯   , μ ( k ) , Σ k ) = ∏ t = 1 k L t ( μ ( t ) , Σ t ) , λ = max ⁡ μ ( t ) , Σ ∏ t = 1 k L t ( μ ( t ) , Σ ) max ⁡ μ ( t ) , Σ t ∏ t = 1 k L t ( μ ( t ) , Σ t ) . L(\mu^{(1)},\Sigma_1,\cdots,\mu^{(k)},\Sigma_k)=\prod_{t=1}^kL_t(\mu^{(t)},\Sigma_t),\\ \lambda=\frac{\max_{\mu^{(t)},\Sigma}\prod_{t=1}^kL_t(\mu^{(t)},\Sigma)}{\max_{\mu^{(t)},\Sigma_t}\prod_{t=1}^kL_t(\mu^{(t)},\Sigma_t)}. L(μ(1),Σ1,,μ(k),Σk)=t=1kLt(μ(t),Σt),λ=maxμ(t),Σtt=1kLt(μ(t),Σt)maxμ(t),Σt=1kLt(μ(t),Σ).
分母中自然选择 X ˉ ( t ) , A t / n t \bar X^{(t)},A_t/n_t Xˉ(t),At/nt作为参数代入,而分子则以 X ˉ ( t ) , A / n \bar X^{(t)},A/n Xˉ(t),A/n代入,这里 A = A 1 + ⋯ + A k A=A_1+\cdots+A_k A=A1++Ak。最后得到的似然比统计量为
λ = ∣ A / n ∣ − n / 2 ∏ t = 1 k ∣ A t / n t ∣ − n t / 2 . \lambda=\frac{|A/n|^{-n/2}}{\prod_{t=1}^k|A_t/n_t|^{-n_t/2}}. λ=t=1kAt/ntnt/2A/nn/2.
根据无偏性要求调整,得到
λ = ∣ A / ( n − k ) ∣ − ( n − k ) / 2 ∏ t = 1 k ∣ A t / ( n t − 1 ) ∣ − ( n t − 1 ) / 2 , ξ = − 2 ln ⁡ λ = ( n − k ) ln ⁡ ∣ A n − k ∣ − ∑ t = 1 k ( n t − 1 ) ln ⁡ ∣ A t n t − 1 ∣ → χ 2 ( 1 2 p ( p + 1 ) ( k − 1 ) ) . \lambda=\frac{|A/(n-k)|^{-(n-k)/2}}{\prod_{t=1}^k|A_t/(n_t-1)|^{-(n_t-1)/2}}, \\ \xi=-2\ln \lambda=(n-k)\ln\left|\frac A{n-k} \right|-\sum_{t=1}^k(n_t-1)\ln\left|\frac{A_t}{n_t-1} \right|\to \chi^2\left(\frac12p(p+1)(k-1) \right). λ=t=1kAt/(nt1)(nt1)/2A/(nk)(nk)/2,ξ=2lnλ=(nk)lnnkAt=1k(nt1)lnnt1Atχ2(21p(p+1)(k1)).

回顾总结

  1. 假设检验 Σ 0 = I p \Sigma_0=I_p Σ0=Ip,有
    ξ = t r ( A ) − n ln ⁡ ∣ A ∣ + n p ( ln ⁡ n − 1 ) → H 0 χ 2 ( p ( p + 1 ) 2 ) . \xi={\rm tr}(A)-n\ln|A|+np(\ln n-1)\stackrel {H_0}\to \chi^2\left(\frac{p(p+1)}{2} \right). ξ=tr(A)nlnA+np(lnn1)H0χ2(2p(p+1)).

  2. 假设检验 Σ = Σ 0 \Sigma=\Sigma_0 Σ=Σ0,有
    ξ = t r ( A Σ 0 − 1 ) − n ln ⁡ ∣ A Σ 0 − 1 ∣ + n p ( ln ⁡ n − 1 ) → H 0 χ 2 ( p ( p + 1 ) 2 ) . \xi={\rm tr}(A\Sigma_0^{-1})-n\ln|A\Sigma_0^{-1}|+np(\ln n-1)\stackrel {H_0}\to \chi^2\left(\frac{p(p+1)}2 \right). ξ=tr(AΣ01)nlnAΣ01+np(lnn1)H0χ2(2p(p+1)).

  3. 假设检验 Σ = σ 2 I p \Sigma=\sigma^2I_p Σ=σ2Ip,有
    ξ = n p ln ⁡ ( t r ( A ) p ) − n ln ⁡ ∣ A ∣ → H 0 χ 2 ( p ( p + 1 ) 2 − 1 ) . \xi=np\ln\left(\frac{{\rm tr}(A)}{p} \right)-n\ln |A|\stackrel {H_0}\to \chi^2\left(\frac{p(p+1)}{2}-1 \right). ξ=npln(ptr(A))nlnAH0χ2(2p(p+1)1).

  4. 假设检验 Σ = σ 2 Σ 0 \Sigma=\sigma^2\Sigma_0 Σ=σ2Σ0,有
    ξ = n p ln ⁡ ( t r ( A Σ 0 − 1 ) p ) − n ln ⁡ ∣ A Σ 0 − 1 ∣ → H 0 χ 2 ( p ( p + 1 ) 2 − 1 ) . \xi=np \ln\left(\frac{{\rm tr}(A\Sigma_0^{-1})}{p} \right)-n\ln|A\Sigma_0^{-1}|\stackrel{H_0}\to \chi^2\left(\frac{p(p+1)}{2}-1 \right). ξ=npln(ptr(AΣ01))nlnAΣ01H0χ2(2p(p+1)1).

  5. 多总体同协方差假设检验问题,检验统计量为
    ξ = ( n − k ) ln ⁡ ∣ A n − k ∣ − ∑ t = 1 k ( n t − 1 ) ln ⁡ ∣ A t n t − 1 ∣ → H 0 χ 2 ( p ( p + 1 ) ( k − 1 ) 2 ) . \xi=(n-k)\ln\left|\frac{A}{n-k} \right|-\sum_{t=1}^k(n_t-1)\ln\left|\frac{A_t}{n_t-1} \right|\stackrel{H_0}\to \chi^2\left(\frac{p(p+1)(k-1)}{2} \right). ξ=(nk)lnnkAt=1k(nt1)lnnt1AtH0χ2(2p(p+1)(k1)).

  • 7
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
《数理统计与多元统计》(何平编著).pdf是一本介绍数理统计和多元统计的教材。该教材由何平编写,主要目的是为了帮助读者了解和掌握数理统计和多元统计的基本概念、方法和应用。 数理统计是统计学中的一个重要分支,研究如何使用数学的方法来进行统计推断和决策。而多元统计是数理统计的一个扩展领域,主要研究多维数据的分析和建模。 这本教材以系统性的方式介绍了数理统计和多元统计的基本理论和方法。首先,它介绍了统计学的基本概念和统计推断的基本原理,包括参数估计、假设检验和置信区间等。然后,它介绍了常见的统计分布和抽样分布,如正态分布、t分布和F分布等。接下来,教材详细介绍了线性回归分析、方差分析和协方差分析等多元统计方法。 这本教材的特点是理论与实践相结合。在每个章节的最后,都提供了一些应用实例和习题,以帮助读者巩固所学内容,并将理论应用到实际问题中。此外,教材还介绍了一些常用的统计软件和工具,如SPSS和R语言,以帮助读者进行数据分析和建模。 总的来说,《数理统计与多元统计》(何平编著).pdf是一本全面且易于理解的教材,适合统计学专业的学生和相关领域的研究人员使用。它不仅可以帮助读者理解和掌握数理统计和多元统计的基本理论,还可以指导读者如何应用这些方法解决实际问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值