Stable Diffusion系列(四):提示词规则与使用

基础规则

所谓提示词,也就是文生图中的文,由连贯的英语单词或句子组成。其最基础的规则是:

  • 不同提示词之间需要用英文逗号分隔,空格和换行不影响读取
  • 想混合多个要素时使用|,相当于and
  • 要突出或忽略某个提示词,可以增大或减小其在整体提示词中的权重,有以下几种方式:
    • (提示词:权重数值),大于1增强,小于1减弱
    • (((提示词))),每套一层()括号增强1.1倍
    • [[[提示词]]],每套一层[]括号减弱1.1倍

以DreamShaper8 SD1.5为例
正面提示词为:

23 years old female,long hair,brown hair,wavy hair,yellow eyes,goat horns in her head,

负面提示词为:

BadDream,easynegative,FastNegativeV2,

生成效果图如下:
在这里插入图片描述

### 使用 Stable Diffusion 生成高质量动物图像 为了获得最佳效果,在使用 Stable Diffusion 生成动物图像时,建议采用具体的正向提示词来描述目标物种及其特征。这有助于引导模型创建更精确的结果[^1]。 #### 正向提示词示例 对于不同类型的动物,可以尝试如下特定的提示词组合: - **猫科动物** - `"A realistic portrait of a tiger, detailed fur texture, sharp claws, intense eyes"` - **鸟类** - `"An eagle soaring high above the clouds, majestic wingspan, clear sky background"` - **海洋生物** - `"A colorful clownfish swimming among sea anemones in vibrant coral reef environment"` 这些详细的描述不仅限定了主体对象,还加入了环境细节和其他视觉元素,使得最终产出更加生动逼真[^3]。 #### 参数调整技巧 除了精心设计的提示词外,适当调节一些关键参数也能显著提升输出质量: - `guidance_scale`: 控制图像文本匹配度,默认值通常为7.5;增大此数值可使结果更贴近给定的文字说明。 - `num_inference_steps`: 定义推理过程中的步数,默认设为50;增加该值可以让算法有更多时间优化每一步骤间的转换关系。 - `eta`: 影响采样过程中随机性的程度,默认取0.0表示完全遵循DDIM调度器规则;较小的 eta 值倾向于产生更为稳定一致的画面风格。 ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to("cuda") prompt = "A realistic portrait of a panda bear, soft black and white fur, bamboo forest backdrop" image = pipeline( prompt=prompt, guidance_scale=8.5, num_inference_steps=60, eta=0.0 ).images[0] image.save("panda_output.png") ``` 通过上述方法配置合适的提示词并微调相关参数,即可利用 Stable Diffusion 创作出令人满意的动物主题作品。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羊城迷鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值