如何基于transformers库通过训练Qwen/DeepSeek模型的传统分类能力实现文本分类任务

虽然如Qwen和DeepSeek是生成式大语言模型,但它们本质上也是transformer模型。本文将详细介绍如何利用Transformers库来训练这些模型,使其能够高效执行文本分类任务。我们将从基础环境搭建开始,深入探讨代码实现细节。


🎉进入大模型应用与实战专栏 | 🚀查看更多专栏内容


在这里插入图片描述

模型与环境准备

首先从huggingface上下载Qwen2或者Qwen2.5模型到本地,我这里选择的是0.5或是1.5b大小的模型。DeepSeek开源的其他模型都太大了,只有基于Qwen蒸馏得到的模型较小可以用来训练。所以虽然说的是Qwen/DeepSeek模型,本质上都是Qwen模型。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羊城迷鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值