在构建复杂的AI应用时,意图识别是一个至关重要的环节。传统上,许多开发者会使用Dify工作流来完成这一任务,但在处理复杂意图时,这种方法往往需要大模型进行多级反复识别,从而带来较高的时间成本。
本文将介绍如何通过修改QwenAgent框架中的FnCallAgent
和ReActChat
类,实现一种更高效的意图识别流程。这种方法能够减少不必要的计算开销,更快速地识别用户意图并提取必要参数。这里以时间识别为例,介绍如何通过工具定义、意图识别、后处理实现对复杂时间问题中时间参数的准确提取。
🎉进入大模型应用与实战专栏 | 🚀查看更多专栏内容

Agent意图识别的本质
在深入技术细节之前,让我们先理解Agent处理