Dify-1:入门介绍

Dify 介绍

项目概览

  • 名称:Dify 一词源自 Define + Modify,意指定义并且持续的改进你的 AI 应用,它是为你而做的(Do it for you)。
  • 描述: Dify 是一款开源的大语言模型(LLM) 应用开发平台。它融合了后端即服务(Backend as Service)和 LLMOps 的理念,使开发者可以快速搭建生产级的生成式 AI 应用。即使你是非技术人员,也能参与到 AI 应用的定义和数据运营过程中。 由于 Dify 内置了构建 LLM 应用所需的关键技术栈,包括对数百个模型的支持、直观的 Prompt 编排界面、高质量的 RAG 引擎、稳健的 Agent 框架、灵活的流程编排,并同时提供了一套易用的界面和 API。这为开发者节省了许多重复造轮子的时间,使其可以专注在创新和业务需求上。
  • GitHub 地址: langgenius/dify
  • 官网地址Dify.AI · 生成式 AI 应用创新引擎
  • 官方文档欢迎使用 Dify

主要技术特性

  • 后端技术:Python/Flask/PostgreSQL

  • 前端技术:Next.js

特性描述
LLM 推理引擎Dify Runtime (自 v0.4 起移除了 LangChain)
商业模型支持10+ 家,包括 OpenAI 与 Anthropic
新的主流模型通常在 48 小时内完成接入
MaaS 供应商支持7 家:Hugging Face、Replicate、AWS Bedrock、NVIDIA、GroqCloud、together.ai、OpenRouter
本地模型推理 Runtime 支持6 家:Xoribits(推荐)、OpenLLM、LocalAI、ChatGLM、Ollama、NVIDIA TIS
OpenAI 接口标准模型接入支持∞ 家
多模态技术ASR 模型
GPT-4o 规格的富文本模型
预置应用类型对话型应用
文本生成应用
Agent
工作流
Prompt 即服务编排可视化编排界面支持实时预览
编排模式 :
- 简易模式
- Assistant 模式
- Flow 模式
变量类型 :
- 字符串
- 单选枚举
- 外部 API
- 文件(Q3 支持)
Agentic Workflow 特性可视化流程编排 + 节点调试
支持节点 :
- LLM
- 知识库检索
- 问题分类
- 条件分支
- 代码执行
- 模板转换
- HTTP 请求
- 工具
RAG 特性可视化知识库管理
索引方式 :
- 关键词
- 文本向量
- LLM辅助问题-分段
检索方式 :
- 关键词
- 相似度匹配
- 混合检索
- 多路召回
召回优化 : ReRank 模型
ETL 技术支持 TXT/Markdown/PDF/HTML/DOC/CSV 自动清洗
支持同步 Notion 文档和网页
向量数据库支持Qdrant(推荐)、Weaviate、Milvus、Pgvector、Chroma、OpenSearch、TiDB、腾讯向量、Oracle 等 14 家
Agent 技术ReAct + Function Call
工具支持 :
- OpenAI Plugin 标准
- OpenAPI Specification
内置工具 : 40+ 款(2024 Q2)
日志支持日志标注
标注回复支持 Q&A 对标注
可导出为微调数据格式
内容审查机制OpenAI Moderation 或外部 API
团队协同工作空间与多成员管理
API 规格RESTful(功能全覆盖)
部署方式Docker、Helm

主要特性

  • Prompt 可视化编排: 支持拖拽组件进行复杂逻辑的设计。
  • 多模型集成: 支持多种大语言模型提供商,如 OpenAI、Anthropic、阿里云等。
  • 增强检索 (Retrieval-Augmented Generation): 利用 RAG 技术结合向量数据库提高回复质量。
  • 工作流引擎: 提供强大的任务调度能力和自定义脚本执行。
  • 多租户管理: 支持多个组织和个人用户的资源隔离和权限控制。

架构图

1. Dataset(数据集)
  • Dataset ETL:负责数据的抽取、转换和加载。这一步确保数据准备好,以便后续处理。
  • Dify RAG Pipeline:RAG(检索增强生成)管道,负责检索、索引和评估数据,以便更好地支持模型的生成任务。
  • Storage:存储模块,包括向量数据库(VectorDB)、关系数据库(Relation DB)和知识图谱(KG)等,用于存储数据和模型需要的其他信息。
2. Prompts(提示词)
  • Dify Prompts IDE:一个集成开发环境,用于创建和管理提示词。它支持 Playground(测试环境)、Endpoint(端点)和 Version(版本控制)等功能。
  • Dify Agent DSL:一个领域特定语言(DSL),用于定义智能体的行为,包括感知(Perception)、规划(Planning)和行动(Action)。
3. Orchestration Studio(编排工作室)
  • 核心模块:负责协调和管理整个应用栈中的各个组件,确保数据和指令在不同模块之间正确流动。
4. Plugins Toolbox(插件工具箱)
  • Workflow, Community, Interface…:提供各种插件和工具,用于扩展平台的功能,支持工作流管理、社区互动和用户界面定制等。
5. Dify LLMOps
  • Monitor, Annotation, Lifecycle…:负责模型的监控、标注和生命周期管理,确保模型在生产环境中的性能和质量。
6. Queries Requests(查询请求)
  • Dify BaaS Platform:提供 API 和 AgentaaS 服务,支持应用构建和集成。
  • API/AgentaaS:提供 API 接口和智能体即服务,方便开发者集成和使用。
  • App Builder:应用构建器,帮助用户快速构建基于 LLMs 的应用。
7. Moderation System(审核系统)
  • Filtering, Risk Ass, Quality…:负责内容过滤、风险评估和质量控制,确保生成内容的安全性和高质量。
  • Cache System:缓存系统,用于日志记录、快照和结果缓存,提高系统性能和响应速度。
8. LLMs(大型语言模型)
  • Commercial LLMs:商业化的大型语言模型。
  • Open Source LLMs:开源的大型语言模型。
  • MaaS Platform:模型即服务平台,提供模型的部署和管理服务。

流程说明

  • Contextual data(上下文数据):绿色箭头表示数据在系统中的流动,从数据集到存储,再到模型和响应。
  • Prompts and examples(提示词和示例):蓝色箭头表示提示词和示例在系统中的使用,从提示词管理到编排工作室,再到模型。
  • Queries & Requests(查询和请求):橙色箭头表示用户查询和请求的处理流程,从请求到平台,再到模型和响应。
  • Outputs & Responses(输出和响应):红色箭头表示模型的输出和响应,从模型到缓存系统,再到用户。

Dify Orchestration Studio 的功能介绍

它是一个用于构建和管理生成式 AI 应用的专业工作站。图中展示了六个主要的功能模块:

RAG Pipeline
  • 功能:安全地构建私有数据与大型语言模型之间的数据通道,并提供高可靠的索引和检索工具。
  • 作用:通过检索增强生成(RAG)技术,将私有数据与语言模型结合,提高生成内容的准确性和相关性。
Prompt IDE
  • 功能:为提示词工程师设计的友好易用的提示词开发工具,支持无缝切换多种大型语言模型。
  • 作用:提供一个集成开发环境,方便工程师创建、测试和管理提示词,确保生成内容的质量。
Enterprise LLMOps
  • 功能:开发者可以观测推理过程、记录日志、标注数据、训练并微调模型,使应用脱离黑盒,持续迭代优化。
  • 作用:提供企业级的模型操作和管理工具,帮助开发者监控和优化模型性能,确保应用的透明性和可维护性。
BaaS Solution
  • 功能:基于后端及服务理念的 API 设计,大幅简化生成式 AI 应用研发流程。
  • 作用:通过提供即用即付的 API 服务,降低开发门槛,加速生成式 AI 应用的开发和部署。
LLM Agent
  • 功能:定制化 Agent,自主调用系列工具完成复杂任务。
  • 作用:通过智能代理自动化处理复杂任务,提高工作效率和处理复杂业务流程的能力。
Workflow
  • 功能:编排 AI 工作流,使其输出更稳定可控。
  • 作用:通过工作流管理,确保 AI 应用的输出稳定性和可控性,满足企业级应用的需求。

Dify Orchestration Studio 旨在为开发者提供一个全面的平台,整合了数据处理、提示词管理、模型操作、API 服务、智能代理和工作流管理等功能,以支持高效构建和管理生成式 AI 应用。


安装指南

前置条件

确保以下软件已正确安装:

  • Git: 版本 >= 2.23
  • Python: 版本 >= 3.9
  • Node.js & npm: Node.js 版本 >= 14.x, npm 版本 >= 6.x
  • PostgreSQL: 版本 >= 12.x
  • Redis: 最新稳定版本

克隆仓库

git clone https://github.com/langgenius/dify.git
cd dify

安装依赖

进入后端目录并安装所需的 Python 包:

cd backend
pip install -r requirements.txt

进入前端目录并安装所需的 JavaScript 包:

cd ../frontend
npm install

配置环境变量

复制 .env.example 文件为 .env 并编辑其中的配置项:

cp .env.example .env
nano .env

初始化数据库

运行迁移脚本来设置初始数据库模式:

alembic upgrade head

启动服务

后台服务
uvicorn app.main:app --reload
前台服务
cd frontend
npm start

访问浏览器查看是否成功启动:

  • Backend: http://localhost:8000/docs (API 文档)
  • Frontend: http://localhost:3000/

核心功能详解

1. Prompt 可视化编排

允许用户通过图形界面轻松设计复杂的提示流程,无需编写大量代码。支持条件判断、循环等多种高级操作。Prompt Visual Editor

2. 多模型集成

内置对多种主流大语言模型的支持,并且可以通过简单的配置接入新的模型提供商。

常用模型列表
  • OpenAI Models: GPT-3, GPT-4
  • Anthropic Models: Claude
  • Alibaba Cloud Models: Qwen
  • Custom Providers: 自定义 RESTful API

3. 增强检索 (RAG)

利用 Retriever-Augmented Generation 技术,结合外部知识库提高生成文本的质量和准确性。

支持的数据格式
  • PDF
  • TXT
  • Markdown
  • JSON
向量存储选项
  • Faiss: 适用于小规模数据集
  • Pgvector: PostgreSQL 扩展,适合大规模分布式存储

4. 工作流引擎

提供灵活的工作流管理和任务调度能力,支持自定义脚本执行。

基本概念
  • Nodes: 功能单元,例如 HTTP 请求、数据库查询等。
  • Edges: 连接 Nodes 形成 DAG 图形。
  • Scripts: 使用 Python 编写的自定义逻辑。

5. 多租户管理

支持不同组织和个人用户的独立空间和权限分配。

角色与权限
  • Admin: 全局管理员,拥有最高权限。
  • User: 普通用户,只能访问自己的应用和服务。
  • Guest: 访客用户,仅能浏览公开内容。

云服务工作室 - Dif

  • 知识库:

    # 如何制作蛋炒饭
    
    蛋炒饭是一道简单又美味的家常菜,关键在于米饭的干爽和火候的掌握。以下是经典做法:
    
    ------
    
    ### **材料准备**(1-2人份)
    
    - 隔夜米饭 1碗(水分少更佳,或用新鲜米饭晾凉后使用)
    - 鸡蛋 2个
    - 葱花 适量
    - 火腿肠/午餐肉/虾仁 适量(可选)
    - 胡萝卜丁、青豆、玉米粒等 适量(可选)
    - 盐 适量
    - 生抽 1小勺(可选,提鲜)
    - 胡椒粉 少许
    - 食用油 2-3勺
    
    ------
    
    ### **步骤详解**
    
    1. **处理食材**
       - 鸡蛋打入碗中,加少许盐和胡椒粉打散。
       - 火腿肠、胡萝卜等配菜切丁,青豆/玉米焯水备用(如果用的话)。
       - 隔夜米饭提前用手或勺子轻轻捏散,避免结块。
    2. **炒鸡蛋**
       - 热锅倒1勺油,中火将蛋液倒入,快速用锅铲划散,炒至凝固但保持嫩滑,盛出备用。
    3. **炒配菜**
       - 补少许油,中火将葱花爆香,加入火腿丁、胡萝卜丁等配菜翻炒至断生。
    4. **炒米饭**
       - 转中大火,倒入米饭快速翻炒,用铲背压散结块,炒至米饭粒粒分明(约2分钟)。
       - 将炒好的鸡蛋倒回锅中,与米饭混合均匀。
    5. **调味**
       - 加盐、少许生抽(可选)调味,撒胡椒粉提香,翻炒均匀。
       - 出锅前撒葱花,翻炒两下即可。
    
    ------
    
    ### **技巧总结**
    
    - **米饭处理**:隔夜饭最佳,新鲜米饭可铺开晾凉或用冰箱冷藏1小时去水分。
    - **蛋液裹饭法**(可选):蛋液直接倒入米饭拌匀再炒,让每粒饭裹上蛋液,呈现金黄色。
    - **火候**:全程中大火快炒,避免粘锅,用不粘锅更省心。
    - **配菜灵活**:可按喜好加香菇、腊肠、虾仁等,但不宜过多以免抢味。
    
    ------
    
    这样炒出的蛋炒饭干香松软,蛋香浓郁,快去试试吧!
    
    
    
    # 如何制作回锅肉
    
    回锅肉是川菜中的经典家常菜,以“肥而不腻、香辣回甜”著称,关键在于肉片的处理和豆瓣酱的炒香。以下是传统做法:
    
    ------
    
    ### **材料准备**(2人份)
    
    - 主料
      - 带皮五花肉 300克(或二刀肉,肥瘦相间为佳)
    - 配菜
      - 蒜苗(青蒜)100克,斜刀切段(蒜白和蒜叶分开放)
      - 可选配菜:青椒、洋葱、莲白等
    - 调料
      - 郫县豆瓣酱 1.5大勺(灵魂调料,不可省略)
      - 豆豉 10克(切碎,提味用)
      - 甜面酱 1小勺(可选,增加酱香)
      - 生抽 1小勺
      - 白糖 1/2小勺(平衡咸辣)
      - 料酒 1大勺
      - 姜片 3片、葱段 2根(煮肉用)
      - 食用油 少许(五花肉会出油)
    
    ------
    
    ### **步骤详解**
    
    #### **1. 煮肉处理**(关键步骤)
    
    - **煮肉**:五花肉冷水下锅,加姜片、葱段、1大勺料酒,中火煮20-25分钟,至筷子能轻松插入肉皮(肉熟但未软烂)。
    - **冷却**:捞出肉用冷水冲洗,擦干水分后切成2-3毫米薄片(越薄越易出灯盏窝)。
    
    #### **2. 煸炒肉片**(出油的关键)
    
    - 热锅放少许油,中火下肉片翻炒至肉片卷曲、肥肉部分透明(此时煸出多余油脂,肉片边缘微焦呈“灯盏窝”状)。
    - 将肉片拨到锅边,倒出部分猪油(避免油腻,保留约1-2勺油炒酱)。
    
    #### **3. 炒香调料**
    
    - 转小火,锅中余油里加入豆瓣酱、豆豉碎,炒出红油和香味(避免火大炒糊)。
    - 加入甜面酱(可选)翻炒均匀,再与肉片混合。
    
    #### **4. 调味与配菜**
    
    - 加入生抽、白糖调味,中火翻炒使肉片裹满酱料。
    - 先下蒜苗白色部分炒至断生,再放入蒜叶快速翻炒均匀(约30秒,保持蒜叶翠绿)。
    
    #### **5. 出锅**
    
    - 关火,淋少许锅边醋(可选,增香解腻),装盘即可。
    
    ------
    
    ### **技巧总结**
    
    - **选肉**:带皮五花肉或二刀肉(后腿肉)最佳,肥瘦比例3:7。
    - **切片**:肉冷却后切薄片,热刀切更整齐。
    - **火候**:煸肉时中火逼出油脂,炒酱务必小火防焦。
    - **灯盏窝**:肉片薄且煸炒到位时自然卷曲,形成标志性的窝状。
    - **替代方案**:若无蒜苗,可用青椒、卷心菜代替;豆瓣酱不可少,若无甜面酱可略加糖调和。
    
    ------
    
    这样炒出的回锅肉酱香浓郁,肉片油亮微卷,搭配米饭绝佳
    
    # 如何制作辣椒炒肉
    
    辣椒炒肉是湘菜中的经典家常菜,讲究“鲜辣下饭,肉嫩椒香”,关键在于辣椒的煸炒和肉片的滑嫩处理。以下是地道做法:
    
    ------
    
    ### **材料准备**(2人份)
    
    - 主料
      - 猪前腿肉/五花肉 200克(肥瘦相间)
      - 螺丝椒/线椒 5-6根(辣味足,皮薄的品种)
    - 辅料
      - 蒜片 3瓣
      - 豆豉 1小勺(可选,增香)
    - 腌肉料
      - 生抽 1大勺
      - 老抽 1/2小勺(上色)
      - 料酒 1小勺
      - 淀粉 1小勺(锁住水分)
    - 调味
      - 盐 少许(根据辣椒辣度调整)
      - 蚝油 1小勺
      - 香醋 几滴(出锅前淋,提味)
    
    ------
    
    ### **步骤详解**
    
    #### **1. 处理食材**
    
    - **肉片腌制**:猪肉切薄片(肥瘦分开,肥肉煸油用),瘦肉加腌肉料抓匀,最后淋1勺油封住水分,腌10分钟。
    - **辣椒处理**:辣椒斜刀切滚刀块(去籽可减辣),拍松更易入味。
    
    #### **2. 干煸辣椒**(关键步骤)
    
    - 热锅不放油,直接下辣椒中火煸炒,边炒边用锅铲按压,至辣椒表皮微皱、散发焦香(约3分钟),盛出备用。
    
    #### **3. 炒肉片**
    
    - 热锅加少许油,先下肥肉片煸出油脂至金黄,再放蒜片、豆豉爆香。
    - 转大火,倒入腌好的瘦肉片快速滑散,炒至变色(约1分钟)。
    
    #### **4. 合炒调味**
    
    - 加入煸好的辣椒,与肉片翻炒均匀,加蚝油、少许盐调味(腌肉已加酱油,盐要少)。
    - 沿锅边淋几滴香醋,激出香味后关火。
    
    ------
    
    ### **技巧总结**
    
    1. **选材要点**
       - 辣椒首选螺丝椒或湖南本地椒,青椒不够辣可用小米椒补充。
       - 猪肉带少许肥肉更香,纯瘦肉需加更多油防柴。
    2. **火候关键**
       - 煸辣椒用中火逼出香气,炒肉需大火快炒锁住嫩度。
       - 豆豉和蒜片是灵魂,小火爆香避免焦糊。
    3. **口感升级**
       - 腌肉时加淀粉和油,肉片更滑嫩。
       - 最后淋醋去腻增香,但量要少(吃不出酸味)。
    4. **变通做法**
       - 加浏阳豆豉或白木耳(云耳)是湖南部分地区特色。
       - 嗜辣者可加一勺剁椒同炒。
    
    ------
    
    这样做出的辣椒炒肉辣而不燥,肉片裹着椒香,汤汁拌饭一绝!🌶️🔥
    
    # 如何制作粉蒸肉
    
    粉蒸肉是一道软糯鲜香的经典蒸菜,融合了肉的醇厚与米粉的米香,关键在于米粉的包裹和火候的控制。以下是传统做法:
    
    ------
    
    ### **材料准备**(3-4人份)
    
    - 主料
      - 带皮五花肉 500克(肥瘦相间,层次分明)
    - 腌肉料
      - 生抽 2大勺
      - 老抽 1小勺(上色)
      - 料酒 1大勺
      - 腐乳汁 1大勺(可选,增香)
      - 白糖 1小勺
      - 姜末 1小勺、蒜末 1小勺
      - 白胡椒粉 少许
    - 蒸肉粉
      - 市售五香蒸肉粉 100克(或自制:大米+糯米炒黄后打碎,加八角、花椒粉混合)
    - 辅料
      - 红薯/南瓜/土豆 200克(垫底吸油)
      - 清水 3-4大勺(调节米粉湿度)
    
    ------
    
    ### **步骤详解**
    
    #### **1. 处理猪肉**
    
    - 五花肉切5毫米厚片(不宜过薄,否则易碎),用温水浸泡10分钟去血水,挤干水分。
    - 加入所有腌肉料抓匀,腌制30分钟以上(隔夜更入味)。
    
    #### **2. 裹米粉**
    
    - 将蒸肉粉分次加入腌好的肉中,每片肉均匀裹粉,若米粉太干可少量加水调节(湿度以米粉能黏住肉片,捏不成团为准)。
    
    #### **3. 摆盘蒸制**
    
    - 蒸碗底部铺红薯块(或其他根茎类蔬菜),将裹粉的肉片皮朝下整齐码放。
    - 蒸锅水烧开后放入,**大火蒸1.5-2小时**(时间越长越软糯,高压锅可缩短至40分钟)。
    
    #### **4. 出锅翻盘**
    
    - 蒸好后倒扣在盘中,撒葱花或香菜点缀。
    
    ------
    
    ### **技巧总结**
    
    1. **选肉关键**
       - 五花肉首选下五花(肥瘦均匀),若怕腻可加几片瘦肉混合。
       - 带皮蒸制更香糯,猪皮需焯水去腥。
    2. **米粉控制**
       - 自制米粉:大米与糯米比例2:1,干锅炒至微黄,加五香粉、辣椒粉调味。
       - 米粉湿度以“捏能成团,轻碰即散”为佳,太湿易结块,太干口感粗糙。
    3. **蒸制窍门**
       - 垫菜吸油:红薯、芋头或山药可平衡油腻,吸收肉汁后更香甜。
       - 蒸锅水量要足,中途避免开盖,防止蒸汽不足导致夹生。
    4. **风味变化**
       - 川味:加豆瓣酱或辣椒粉腌制,麻辣鲜香。
       - 荷叶版:用荷叶包裹蒸制,增添清香。
    
    ------
    
    这样做出的粉蒸肉米粉油润,肉质酥软不腻,入口即化,配米饭或夹馒头都超满足!🍖
    

使用

配置模型

需要先在 Dify 的 设置 – 模型供应商 页面内添加并配置所需要的模型。

按模型的使用场景将模型分为以下 4 类:

  • 系统推理模型
  • Embedding 模型
  • Rerank 模型增强检索能力,改善 LLM 的搜索结果
  • 语音文字转换模型

构建应用

  • 聊天助手:基于 LLM 构建对话式交互的助手
    • 对话型应用可以用在客户服务、在线教育、医疗保健、金融服务等领域。这些应用可以帮助组织提高工作效率、减少人工成本和提供更好的用户体验。
  • 文本生成应用:面向文本生成类任务的助手,例如撰写故事、文本分类、翻译等
  • Agent:能够分解任务、推理思考、调用工具的对话式智能助手
    • 智能助手(Agent Assistant),利用大语言模型的推理能力,能够自主对复杂的人类任务进行目标规划、任务拆解、工具调用、过程迭代,并在没有人类干预的情况下完成任务。
  • 对话流(Chatflow):适用于设计复杂流程的多轮对话场景,支持记忆功能并能进行动态应用编排。
  • 工作流(Workflow):适用于自动化、批处理等单轮生成类任务的场景的应用编排方式,单向生成结果。
    • 工作流通过将复杂的任务分解成较小的步骤(节点)降低系统复杂度,减少了对提示词技术和模型推理能力的依赖,提高了 LLM 应用面向复杂任务的性能,提升了系统的可解释性、稳定性和容错性。
    • 工作流分为两种类型:
      • Chatflow:面向对话类情景,包括客户服务、语义搜索、以及其他需要在构建响应时进行多步逻辑的对话式应用程序。
      • Workflow:面向自动化和批处理情景,适合高质量翻译、数据分析、内容生成、电子邮件自动化等应用程序。
### DeepSeek Dify AI 应用平台入门教程 #### 一、环境准备 对于初次接触DeepSeek Dify的用户来说,安装和配置开发环境是第一步。确保本地计算机已安装Python解释器以及pip工具,这是运行大多数机器学习框架的基础条件[^1]。 #### 二、项目初始化 启动命令行终端并创建一个新的虚拟环境来隔离项目的依赖关系。接着利用`dify-cli`命令行工具完成新项目的建立过程。该CLI提供了简便的操作方式让用户能够迅速搭建起基础架构。 ```bash $ pip install dify-cli $ mkdir my_ai_app && cd $_ $ dify init . ``` #### 三、熟悉界面布局 登录到Dify提供的Web控制台之后,界面上会展示多个重要板块:左侧导航栏包含了主要的功能菜单;右侧则是具体操作区域,在这里可以进行数据集上传、模型训练参数设置等一系列活动。这种设计使得整个流程更加直观易懂。 #### 四、构建首个应用程序 借助内置的工作流编辑器拖拽组件至画布上即可轻松定义业务逻辑链路图。比如连接文本分类模块同推荐算法节点形成完整的预测服务管线。每一个环节都支持自定义调整优化性能表现。 ```python from dify import WorkflowBuilder builder = WorkflowBuilder() nlp_module = builder.add_natural_language_processing('en') recommendation_system = builder.connect_to(nlp_module, 'Recommendations') workflow = builder.compile() ``` #### 五、测试与迭代改进 编写少量样本输入验证所建系统的准确性,并根据反馈不断修正直至满意为止。期间还可以尝试接入更多第三方API增强特性或者更换不同预训练模型提高精度水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

uncle_ll

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值