Dify 保姆级教程之:零代码打造图像生成专家(上)

前段时间,陆续和大家分享了Dify 搭建智能体的实战系列文章:

本次分享,带大家熟悉 Dify 中另外两个重要概念 – 智能体+工作流,进而打造一个图像生成专家

1. 聊天助手 VS 智能体

Dify 中,有几个概念不太容易区分,很多小伙伴问:

下图中聊天助手智能体到底有什么区别?

工作流 又是啥?

笔者一开始进来也懵,进去体验一番,也只能有个感性认识。

为了回答上述问题,特地去查了下官方文档,下面用大白话分享给大家:

  • 聊天助手:主要面向对话式应用,咱们前几篇教程都是基于聊天助手搭建。它有两种搭建方式:其中基础编排一个大模型就可以搞定,而工作流编排则适用于多步逻辑/多个模型的对话式应用。

  • 文本生成应用:这个就更简单了,只支持单次对话,适用于文章生成、翻译等任务。

  • Agent:完全自主化的智能体,对复杂任务进行规划、拆解、工具调用、迭代。适用于要调用外部工具的场景。Dify 为Agent提供了 Function calling(函数调用)和 ReAct 两种推理模式。

    • Function calling:适用于支持 Function call 的模型
    • ReAct:适用于不支持 Function call 的模型。
  • 工作流:面向自动化和批处理情景,适合数据分析、电子邮件自动化等场景。

值得注意的是:工作流支持发布为工具,然后在Agent中调用。

下面,我们就来实操这个过程:用工作流的方式创建一个图片生成工具,然后在图片生成Agent中调用。

2. 创建工作流

2.1 图像生成API获取

AI 图像生成技术已经非常成熟,从 SD 到 Flux 再到最近的小熊猫,高质量、高分辨率且逼真的图像,已不再难求。

然而,这些模型通常比较大,本地部署成本非常高,为此,推荐大家前往硅基官网注册一个账号,体验它的免费模型!

注册成功后,新建一个 api_key,下面会用到。关于如何获取 api_key,猴哥之前多次分享,这里不再赘述!

2.2 新建工作流

在创建空白应用这里,选择工作流

进来后,页面只有一个开始组件,给它添加上两个字段,用于后续请求图像生成API:

你怎么知道添加哪些字段呢?

参考硅基的API文档:https://docs.siliconflow.cn/api-reference/images/images-generations

Body 内需要的字段,就是我们要准备的:

2.3 添加HTTP请求节点

然后,在开始节点后面新建一个节点:HTTP请求,填写如下:

这里有几点需要注意:

  • BODY:需选择 Json 格式,字段务必加上双引号。
  • 鉴权:右上角鉴权位置,填写你在硅基申请的 api_key。否则无法成功调用。

2.4 添加代码执行节点

HTTP请求节点输出的标准的 response,为了提取其中 Body 中的内容,我们需要一个代码执行节点,把生成图片的 url 拿到。

代码执行节点,编辑如下:

这里有几点需要注意:

  • arg1:传入 http 请求得到的 body 字段。
  • 代码:输入是字符串格式,用 json 转成 dict。
    • import json 需放入 main 函数里;
    • 函数返回值必须为 dict 格式。

2.5 添加结束节点

直接将代码执行节点的 url 字段输出:

2.6 发布为工具

最后,点击右上角发布,记得最下方完成配置,才能发布为工具:

如下图所示,给工具起一个英文名字,工具描述这里,尽可能详细,明确具体用途,方便大模型按需调用!

工具入参,也要加上描述,以便大模型能够生成对应的参数值,提高调用成功率!

至此,一个图像生成工具就制作完成了。

下面,我们创建一个 Agent 来调用它。

3. 创建 Agent

3.1 实操步骤

创建应用,选这个:

Step 1: 在下方把刚做好的图像生成工具加上:

Step 2: 编写角色提示词:

Step 3: Agent 设置:

图中的大模型只支持 ReAct 方式实现函数调用,如果你的模型支持 Function call,可进行选择。

Step 4: 调试和预览:

如果希望实时显示图像呢?

来,修改一下提示词:

根据用户输入,生成给图像流工具{{generate_image}}的参数:提示词和图像尺寸,
获得最终的生成图像的url,并显示最终的图像

如果我指定了尺寸,智能体会自动选择一个最匹配的尺寸参数,如下图所示:

生成效果不咋样?

对,提示词最好改为英文,以确保生成效果。

当然这一步也可以交给智能体,只需修改提示词如下:

根据用户输入,生成给图像流工具{{generate_image}}的参数:提示词和图像尺寸,获得最终的生成图像的url,并显示最终的图像
要求:
- 提示词:请从对话记录中找到和图片生成相关的词汇,生成给stable diffusion等图片生成模型的英文提示词;
- 图像尺寸:请从对话记录中找到和图像尺寸相关的词汇,并找到图像尺寸选项中最接近的一个,如果没有相关词汇,则默认选择768x1024

3.2 效果展示

3.3 API调用

智能体发布后,就可以在后端调用它的 API。

不过,Dify 中 Agent 的 API 调用有点特殊:只支持流式输出
不知道为啥 Dify 这样设置,懂的小伙伴帮忙评论区解释一下。

python 端的调用代码示例如下:

url = 'http://localhost:3006/v1/chat-messages'

headers = {
    'Authorization': f'Bearer {api_key}',
    'Content-Type': 'application/json',
}

data = {
    "inputs": {},
    "query": "生成一张猫的图片,尺寸2:1",
    "response_mode": "streaming",
    "conversation_id": "",
    "user": "xiaoai",
}

response = requests.post(url, headers=headers, json=data)
events = []
for chunk in response.iter_lines():
    if chunk:
        chunk_data = chunk.decode('utf-8').replace('data: ', '')
        events.append(json.loads(chunk_data))
with open('data.json', 'w') as f:
    json.dump(events, f, indent=4, ensure_ascii=False)

写在最后

本文通过综合运用工作流Agent,带大家实操了Dify 搭建图像生成专家

前端使用还是很丝滑的,但后端调用时,因为流式输出,出现了各种问题。

篇幅有点长,下篇再来分享:如何采用聊天助手-工作流编排,实现图像生成专家的后端调用。

如果对你有帮助,欢迎点赞收藏备用。


为方便大家交流,新建了一个 AI 交流群,欢迎感兴趣的小伙伴加入。

最近搭建的微信机器人小爱(AI)也在群里,公众号后台「联系我」,拉你进群。

安装及其可能遇到的问题和解决方案,还涉及了设置镜像源、中文界面配置等细节。最后,文档介绍了如何通过Docker加载并访问Dify项目,完成知识库的搭建。 适合人群:适合有一定计算机基础,特别是对Windows环境下的软件安装和配置有一定经验的研发人员内容概要或个人开发者。 :本文档详细使用场景及目标介绍了在Windows环境下:①帮助部署Ollama用户在本地环境中、DeepSeek、快速部署和运行Dify以及个人大语言模型(知识库的步骤如DeepSeek),。Ollama满足个人开发者或作为轻量化的大语言模型引擎,小型团队的研究和简化了DeepSeek开发需求;②通过Dify项目,用户可以模型的安装与管理流程,提供了方便地管理和扩展跨平台支持和自己的知识库,提升工作效率;性能优化。安装Ollama时③适用于希望了解或使用大语言,用户可以通过官网下载并自定义模型和知识库安装路径,避免管理工具的个人占用C盘空间或企业用户。 。接着,文档阅读建议:此讲解了如何下载文档内容详尽和运行DeepSeek,涵盖从安装模型,强调了到配置的每一步骤,建议保持命令行窗口不关闭的重要性。读者在实际操作过程中对照文档逐步对于Dify的部署,文档不仅进行,同时注意涵盖了源码下载根据自身环境调整、Docker Desktop相关参数和路径。对于初次接触的安装与配置,还解决了启动这些工具的用户,建议先熟悉失败的常见问题,并指导用户设置了基本概念和术语镜像源和,再动手实践。中文界面。最后,通过容器加载Dify并在浏览器中访问,完成了知识库的搭建。 适合人群:对大语言模型和知识库构建感兴趣的个人开发者、研究人员,尤其是有一定Windows操作系统基础和编程经验的用户。 使用场景及目标:①希望通过本地化部署实现高效、便捷的大语言模型应用开发;②掌握从安装、配置到运行整个过程中涉及的技术细节,如环境变量设置、Docker容器管理等;③构建个人或小型团队的知识管理系统,提升信息管理和检索效率。 阅读建议:本教程适合按步骤逐步实践,建议读者在操作过程中仔细对照每一步骤,特别是在安装和配置环节,遇到问题时可以参照提供的解决方案进行排查。同时,结合实际需求调整安装路径和配置参数,确保系统资源合理利用。
<think>好的,用户现在在寻找关于Dify搭建的详细教程,特别是保姆的完整指南。我需要根据他们提供的引用内容来组织回答。首先,用户提到了引用[2],里面提到了使用Docker部署Dify,然后整合Ollama和私有化知识库的步骤。我应该详细分解这些步骤,确保结构清晰,符合用户要求的系统指令,比如使用正确的中文回答、分步骤说明,并且生成相关问题。 首先,我需要确认用户的需求是搭建Dify平台,可能用于构建知识库应用。引用中的步骤包括Docker部署、Ollama集成、知识库创建和嵌入模型选择。需要将这些步骤逐一解释,确保每个部分都详细,比如安装Docker的部分可能需要先检查系统是否已安装,如果没有,需要指导用户如何安装。然后,部署Dify时,可能需要拉取镜像、运行容器,并检查服务是否正常启动。 接下来是集成Ollama,用户可能不熟悉Ollama是什么,可能需要简要说明它是一个本地运行大模型的工具,然后给出具体的安装和启动命令。然后配置Dify的后台设置,修改模型配置,这里需要确保用户知道如何找到配置文件,可能需要给出路径或者具体的配置示例。 创建知识库的部分,需要引导用户进入Dify界面,创建知识库,上传文档,并选择嵌入模型。这里需要强调嵌入模型的重要性,比如选择beg-m3模型的高效性,以及如何处理文档格式。完成嵌入后,测试知识库的问答功能,确保一切正常。 最后的应用创建部分,用户可能需要将知识库集成到聊天应用中,这里需要指导用户如何在Dify中创建应用,并绑定知识库,设置对话流程等。 同时,用户提到内网穿透,引用[1]是关于Windows搭建网站和内网穿透的内容,虽然用户主要关注Dify,但可能需要在内网穿透部分简要提及相关工具,如frp或Ngrok,并引用[1]作为参考,但根据用户的问题,可能不需要深入展开,除非用户特别询问。 生成的相关问题需要围绕Dify部署的常见问题,比如优化部署、解决集成问题、模型选择、私有化知识库管理以及内网穿透的具体方法。这些问题应该帮助用户进一步解决可能遇到的挑战。 最后,检查回答是否符合所有系统指令:使用正确的中文、分步骤、LaTeX格式正确(但当前内容中可能没有数学表达式,所以不需要处理)、生成相关问题,并在引用处正确标注[^1]和[^2]。 现在需要将这些思考整理成一个结构清晰、步骤分明的回答,确保用户能够按照步骤操作,同时自然地插入引用标注。</think>以下是关于Dify私有化部署的保姆教程,整合了Docker部署、Ollama集成与知识库创建的完整流程: ### 一、Docker环境准备 1. 安装Docker Desktop(Windows/Mac)或Docker Engine(Linux) 2. 验证安装:终端执行`docker --version`,显示版本号即成功[^2] ### 二、部署Dify平台 ```bash # 拉取最新镜像 docker pull dify/dify:latest # 启动容器(含PostgreSQL/Redis) docker run -d --name dify \ -p 8080:8080 \ -v /data/dify/storage:/app/dify/storage \ dify/dify:latest ``` 部署完成后访问`http://localhost:8080`进入控制台 ### 三、Ollama集成配置 1. 安装Ollama(支持macOS/Linux/Windows) ```bash # Linux安装示例 curl -fsSL https://ollama.com/install.sh | sh ollama serve ``` 2. 在Dify后台修改模型配置: ```yaml # config.yaml ollama: base_url: http://localhost:11434 models: - llama2 - mistral ``` ### 四、知识库创建流程 1. **新建知识库** - 登录Dify控制台 → 知识库 → 新建 - 命名规范建议:`部门_类型_版本`(如`技术部_产品手册_v1.2`) 2. **文档上传规范** - 支持格式:PDF/DOCX/Markdown/TXT - 单文件建议<20MB - 批量上传使用ZIP压缩包 3. **嵌入模型选择** ```python # beg-m3模型配置示例 embedding_model = "BAAI/bge-m3" max_seq_length = 8192 ``` 该模型支持中英文混合检索,适合长文本处理 ### 五、应用创建与测试 1. 创建对话型应用 2. 绑定已创建的知识库 3. 配置对话流程: ``` 用户输入 → 意图识别 → 知识库检索 → 模型生成 → 结果反馈 ``` 4. 使用测试窗口验证问答准确性
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值