因素负荷量(factor loadings)的理解

在因子分析里,有个词叫因子载荷(factor loadings),此词简单地说就是个别变数与因子之间的相关性(没转轴前),所以这个值如同Pearson correlations一样,数值介于- 1至1之间。因子载荷的平方也就是这个因子可以解释多少这个变数。举例来说,如果因子载荷是0.4,那表示该因子可解释此变数0.16的variance。

由于一个因子会与多个变数相关,所以因子载荷也可以解读成:这些变数在这个因子里面的weight有多少,或是这个变数多接近这个因子。

在跑完因子分析之后,有一个要作的重要决定就是:哪些变数可归入某个因子?依照Hair et al. (1992)的说法,低于0.4的因子载荷是太低,0.6以上是高。但要注意的是:这些只是一个准则而已,要决定一个变数是否应归为一个因子取决于理论而非数据,数据只是佐证而已,有时候因为sampling或种种因子,得到结果或许稍微不如预期也是可以接受的。

如果对因子分析有兴趣又不怕读点英文,这个网页http://faculty.chass.ncsu.edu/garson/PA765/factor.htm作得非常不错,深入浅出,大家可以参考。

生成载荷(loadings)的3D图可以帮助我们更直观地理解主成分分析中变与主成分之间的关系。下面是一个使用Python中的matplotlib库来生成载荷的3D图的示例代码: ```python import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.decomposition import PCA # 创建一个示例数据集 X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) # 进行主成分分析 pca = PCA(n_components=3) pca.fit(X) # 得到变载荷 loadings = pca.components_ # 绘制载荷的3D图 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # 设置坐标轴标签 ax.set_xlabel('Variable 1') ax.set_ylabel('Variable 2') ax.set_zlabel('Variable 3') # 绘制变载荷 ax.quiver(0, 0, 0, loadings[0, 0], loadings[1, 0], loadings[2, 0], color='r', label='PC1') ax.quiver(0, 0, 0, loadings[0, 1], loadings[1, 1], loadings[2, 1], color='g', label='PC2') ax.quiver(0, 0, 0, loadings[0, 2], loadings[1, 2], loadings[2, 2], color='b', label='PC3') # 设置图例 ax.legend() plt.show() ``` 这段代码演示了如何使用主成分分析将数据降维到3个主成分,并绘制出对应的载荷的3D图。在图中,每个箭头代表一个变,箭头的方向和长度表示了变在对应主成分上的权重或贡献度。 请注意,这只是一个示例,实际的使用可能需要根据具体的数据和需求进行调整。另外,如果你使用其他的数据分析软件或编程工具,生成载荷的3D图的方法可能会有所不同。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值