一、B树
1、B树的特性
一棵m阶的B树的满足条件:
(1)每个节点至多有m棵子树
(2)根节点除外,其它每个分支节点至少有【m/2】棵子树
(3)根节点至少有两棵子树(除非B树只包含一个节点)
(4)所有叶子节点在同一层上,B树的叶子节点可以看成一种外部节点,不包含任何信息。
(5)有j个孩子的非叶结点恰好有j-1个关键码,关键码按递增次序排列。
B 树又叫平衡多路查找树。如图:
2、B树的使用场景
B树多用于做文件系统的索引。
那么问题来了:为什么要用B树,红黑树不是就挺好的么?
原因:
B树和二叉树、红黑树相比较,子树更多也就是路数越多,子树月多表示数的高度越低,搜索效率越高,当然如果路数太多就可能变成一个有序数组了(如下图)。所以当然不可能使得路数无限大。
回到正题:正因为文件系统和数据库一般都是存在电脑硬盘上的,如果数据量太大的话不一定能一次性加载到内存中。(一棵树不能一次性加载完怎么查找对吧?)但是B树可以多路存储。也正因为B树的这一个优点,可以在文件查找的时候每次只加载一个节点的内容存入内存来查找。而红黑树在内存中查找非常块,但是如果在数据库和文件系统中,显然B树更优。
二、B+树
B+树是B树的变种,有着比B树更高的查询效率。
1、B+树的特性
(1)有 k 个子树的中间节点包含有 k 个元素(B 树中是 k-1 个元素),每个元素不保存数据,只用来索引,所有数据
都保存在叶子节点。
(2)所有的叶子结点中包含了全部元素的信息,及指向含这些元素记录的指针,且叶子结点本身依关键字的大小
自小而大顺序链接。
(3)所有的中间节点元素都同时存在于子节点,在子节点元素中是最大(或最小)元素。
2、B+树的使用场景
B+树是在B树的基础上进行改造的,他的数据都在叶子节点,同时叶子节点之间还加了指针形成链表。
B+树多用于数据库中的索引。
那么为什么B+树用于数据库中的索引呢?
原因:
因为在数据库中select常常不只是查询一条记录,常常要查询多条记录。比如:按照id的排序的后10条。如果是多条的话,B树需要做中序遍历,可能要跨层访问。而B+树由于所有数据都在叶子结点,不用跨层,同时由于有链表结构,只需要找到首尾,通过链表就能够把所有数据取出来了。
三 B*树:
是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;
B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3
(代替B+树的1/2);
B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据
复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父
结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;
B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分
数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字
(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之
间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;
所以,B*树分配新结点的概率比B+树要低,空间使用率更高;
小结:
B-树:
多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键
字范围的子结点;
所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;
B+树:
在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点
中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;
B*树:
在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率
从1/2提高到2/3;
参考链接:https://blog.csdn.net/wyqwilliam/article/details/82935922
参考链接:https://blog.csdn.net/dreamispossible/article/details/92852943
参考链接:https://blog.csdn.net/zgz15515397650/article/details/85165454