数学
文章平均质量分 77
土豆西瓜大芝麻
这个作者很懒,什么都没留下…
展开
-
Huffman编码及实现
Huffman编码及其实现转载 2022-09-28 11:11:51 · 5469 阅读 · 0 评论 -
通俗理解卷积
如何通俗易懂地解释卷积? - 知乎对卷积的困惑卷积这个概念,很早以前就学过,但是一直没有搞懂。教科书上通常会给出定义,给出很多性质,…https://www.zhihu.com/question/22298352/answer/637156871原创 2021-09-28 12:43:11 · 155 阅读 · 0 评论 -
通俗易懂地理解卷积
作者:palet链接:https://www.zhihu.com/question/22298352/answer/637156871来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。卷积这个概念,很早以前就学过,但是一直没有搞懂。教科书上通常会给出定义,给出很多性质,也会用实例和图形进行解释,但究竟为什么要这么设计,这么计算,背后的意义是什么,往往语焉不详。作为一个学物理出身的人,一个公式倘若倘若给不出结合实际的直观的通俗的解释(也就是背后的“物理...转载 2021-09-28 12:37:32 · 1303 阅读 · 0 评论 -
如何理解傅里叶变换公式?
本文是前面一篇文章的补充,从数学分析的角度来理解傅里叶变换。问题为什么按照傅里叶公式做就可以将信号从时域转变到频域? 为什么式中的e^(-jwt)部分会出现一个负号?有什么特定的意义?j如何理解傅里叶变换公式? - 知乎 1.为什么按照傅里叶公式做就可以将信号从时域转变到频域?2.为什么式中的e^(-jwt)部分会出现一个负号?…https://www.zhihu.com/question/19714540因为无法转载,所以把链接贴上来了,大家可以去看看,讲的非常好。...原创 2021-09-10 11:25:17 · 1075 阅读 · 0 评论 -
图解傅里叶变换
作者:韩昊知乎:Heinrich微博:@花生油工人知乎专栏:与时间无关的故事谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更感激不尽了。 ——更新于 2014.6.6,想直接看更新的同学可以直接跳到第四章———— 我保证这篇文章和你以前看过的所有文章都不同,这是 12 年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者…… 这篇文章的核心思想就是.转载 2021-09-07 00:25:51 · 5169 阅读 · 0 评论 -
最佳优先搜索和A*搜索算法
BFS算法算法原理最佳优先搜索算法是一种启发式搜索算法(Heuristic Algorithm),其基于广度优先搜索算法,不同点是其依赖于估价函数对将要遍历的节点进行估价,选择代价小的节点进行遍历,直到找到目标点为止。BFS算法不能保证找到的路径是一条最短路径,但是其计算过程相对于Dijkstra算法会快很多。算法流程算法实现需要有两个优先队列Open和Closed,Open队列用来存放未遍历并将要被遍历的节点;Closed队列用来存放已经遍历过的节点。 初始时将根节点放入Open队列中转载 2021-04-16 15:17:58 · 6018 阅读 · 1 评论 -
动画讲解平衡二叉树AVL
前言Wiki:在计算机科学中,AVL树是最早被发明的自平衡二叉查找树。在AVL树中,任一节点对应的两棵子树的最大高度差为1,因此它也被称为高度平衡树。查找、插入和删除在平均和最坏情况下的时间复杂度都是 O(logn)。增加和删除元素的操作则可能需要借由一次或多次树旋转,以实现树的重新平衡。AVL 树得名于它的发明者 G. M. Adelson-Velsky 和 Evgenii Landis,...转载 2020-02-27 22:35:30 · 1894 阅读 · 0 评论 -
图解红黑树,手工推导行为树的变化过程
红黑树是一种常见的自平衡二叉查找树,常用于关联数组、字典,在各种语言的底层实现中被广泛应用。本篇分享将为读者讲解红黑树的定义、创建和用途。一.红黑树的定义 每个节点或者是黑色,或者是红色。 根节点是黑色。 每个叶子节点是黑色。 如果一个节点是红色的,则它的子节点必须是黑色的 从任意一个节点到叶子节点,经过的黑色节点是一样的。 这段关于红黑...转载 2020-02-27 22:33:01 · 378 阅读 · 0 评论 -
如何数据库中存储一棵树,实现无限级分类
在一些系统中,对内容进行分类是必需的功能。比如电商就需要对商品做分类处理,以便于客户搜索;论坛也会分为很多板块;门户网站、也得对网站的内容做各种分类。分类对于一个内容展示系统来说是不可缺少的,本博客也需要这么一个功能。众所周知,分类往往具有从属关系,比如铅笔盒钢笔属于笔,笔又是文具的一种,当然钢笔还可以按品牌来细分,每个品牌下面还有各种系列...这个例子中从属关系具有5层,从上到下依次是:...转载 2020-02-27 22:09:24 · 1247 阅读 · 0 评论 -
理解A*寻路算法具体过程
这两天研究了下 A* 寻路算法, 主要学习了这篇文章, 但这篇翻译得不是很好, 我花了很久才看明白文章中的各种指代. 特写此篇博客用来总结, 并写了寻路算法的代码, 觉得有用的同学可以看看. 另外因为图片制作起来比较麻烦, 所以我用的是原文里的图片. 当然寻路算法不止 A* 这一种, 还有递归, 非递归, 广度优先, 深度优先, 使用堆栈等等, 有兴趣的可以研究研究~~简...转载 2020-02-26 02:02:09 · 200 阅读 · 0 评论 -
浅显易懂的A*算法解释
该篇博客由iOS课程团队的Johann Fradj发布,他现在是一个全职开发ios的开发者.他是Hot Apps Factory(其是App Cooker的创造者)的共同创建者.学习A*寻路算法是如何实现的!你是否在你的游戏中想要怪物或者玩家移动到特定的地点,同时避免墙和障碍物?如果是,读一读这篇课程,它将向你展示你能用A*寻路算法做些什么!在网上已经有一些关于A*寻路算法的文...转载 2020-02-26 01:40:08 · 455 阅读 · 0 评论 -
最短路径、最短路径树和最小生成树
首先介绍这三个概念,很多人都听过最短路径了,但是最短路径树却很少听过,关于最短路径树的介绍也不太多。而最短路径树和最小生成树更是完全不同的两个概念。最短路径就是从一个指定的顶点出发,计算从该顶点出发到其他所有顶点的最短路径。通常用Dijkstra算法,Floyd算法求解。最短路径树SPT(Short Path Tree)是网络的源点到所有结点的最短路径构成的树。...转载 2019-12-17 21:35:08 · 8005 阅读 · 1 评论 -
最大熵学习笔记(0)--基础知识
转载 2019-12-16 19:14:32 · 126 阅读 · 0 评论 -
《理解矩阵》有感
近期准备拾起2年前的研究工作撺论文,看了2018年发的社区发现的相关论文,发现社区发现已经做的差不多了。但是还是找了几篇还不错参考一下,看看能不能基于人家的东西做点啥。这里面就用到了谱分析。我原来对谱分析以及各种变换(傅里叶、拉普拉斯)看着就头大。现在准备好好学学这些东西了。先找了图谱论,准备看看,发现上来就碰见了图的Laplacian矩阵。到了矩阵,就又头大了,本科的时候学线性代数没好好学,另外...原创 2018-12-26 15:14:52 · 364 阅读 · 0 评论 -
旋转矩阵
旋转坐标轴还是旋转坐标?有什么区别?相信很多人都有过类似的问题,这里我来简单尝试着理解一下。旋转矩阵的相关知识请查看维基百科旋转矩阵需要注意的是 Roll Pitch Yaw 的定义:这里的旋转矩阵是需要左乘的,而且以逆时针为正。关于左乘和右乘:R是一个旋转矩阵,X是一个三维列向量[x,y,z]'。RX就是把X旋转。(RX)'=X'*R',看R'就是一个右乘的旋转...转载 2019-05-15 12:05:04 · 2648 阅读 · 0 评论 -
旋转矩阵的性质
学过矩阵理论或者线性代数的肯定知道正交矩阵(orthogonal matrix)是一个非常好的矩阵,为什么这么说?原因有一下几点:正交矩阵每一列都是单位向量,并且两两正交。最简单的正交矩阵就是单位阵。 正交矩阵的逆(inverse)等于正交矩阵的转置(transpose)。同时可以推论出正交矩阵的行列式的值肯定为正负1的。 正交矩阵满足很多矩阵性质,比如可以相似于对角矩阵等等。 以上可...转载 2019-05-15 13:43:38 · 6959 阅读 · 1 评论 -
旋转矩阵的推导
转载 2019-05-15 14:39:51 · 380 阅读 · 0 评论 -
沿任意轴旋转
前言常用的几何变换中旋转是较为复杂的一种,最近看《Physically Based Rendering, Second Edition: From Theory To Implementation》一书涉及绕任意轴旋转的实现,也给出了大体思路,但具体的推导过程及最后的旋转矩阵并未直接地给出,故根据参考Animated CGEM: Rotation About an Arbitrary Axis...转载 2019-05-15 15:27:01 · 1075 阅读 · 0 评论 -
通俗易懂“卡尔曼滤波”
前言相信所有学习卡尔曼滤波的同学首先接触的都是状态方程和观测方程,学过控制系统的同学可能不陌生,否则,先被那两个看起来好深奥的公式给吓跑了,关键是还不知道他们究竟是干什么的,什么是状态,什么是观测。。。。。。如果再看到后面的一大串递归推导增益,实在很晕很晕,更糟糕的是还没整明白的时候就已经知道卡尔曼滤波其实已经不够使了,需要extended kalmanfilter 和particle fil...转载 2019-05-15 17:02:42 · 813 阅读 · 0 评论 -
再论“卡尔曼滤波”
考虑轨道上的一个小车,无外力作用,它在时刻t的状态向量只与相关:(状态向量就是描述它的t=0时刻所有状态的向量,比如:[速度大小5m/s, 速度方向右, 位置坐标0],反正有了这个向量就可以完全预测t=1时刻小车的状态)那么根据t=0时刻的初值,理论上我们可以求出它任意时刻的状态。当然,实际情况不会这么美好。这个递推函数可能会受到各种不确定因素的影响(内在的外在的都算,比如刮风...转载 2019-05-15 22:00:11 · 162 阅读 · 0 评论 -
行列式
大多数线性代数引入行列式的方式都是通过讲解线性方程组的,这种方式能够让学生很快地掌握它的计算,以及给出了一个最实际的应用(就是解方程组啦)。但是这很容易让读者走进一个误区,让他们认为线性代数就是研究解方程组的。这样并不能让读者真正理解到它的本质,而只有当我们对它有了一个直观熟练的感觉,我们才能很好地运用它。行列式的出现其实是为了判断一个矩阵是否可逆的,它通过某些方式构造出一个“相对简单”的函数...转载 2018-12-27 11:47:09 · 669 阅读 · 0 评论