行列式

大多数线性代数引入行列式的方式都是通过讲解线性方程组的,这种方式能够让学生很快地掌握它的计算,以及给出了一个最实际的应用(就是解方程组啦)。但是这很容易让读者走进一个误区,让他们认为线性代数就是研究解方程组的。这样并不能让读者真正理解到它的本质,而只有当我们对它有了一个直观熟练的感觉,我们才能很好地运用它。

行列式的出现其实是为了判断一个矩阵是否可逆的,它通过某些方式构造出一个“相对简单”的函数来达到这个目的,这个函数就是矩阵的行列式。让我们来反思一下,矩阵可逆意味着什么呢?之前已经提到过,矩阵是从一个点到另外一个点的变换,那么逆矩阵很显然就是为了把它变换回来。我们还说过,“运动是相对的”,点的变换又可以用坐标系的变换来实现。但是,按照我们的直觉,不同的坐标系除了有那些运算上的复杂度不同(比如一般的仿射坐标系计算点积比直角坐标系复杂)之外,不应该有其他的不同了,用物理的语言说,就是一切坐标系都是平权的。那么给出一个坐标系,可以自然地变换到另外一个坐标系,也可以自然地将它变换回来。既然矩阵是这种坐标系的一个描述,那么矩阵不可逆的唯一可能性就是:

这个n阶矩阵的n个列向量根本就构不成一个n维空间的坐标系。

也就是说,它没有资格成为一个坐标系(各列向量之间不是线性无关的,它们不能构成n维空间的一组基)!

那么我们就想办法为某个n阶矩阵A构造一个函数|A|,当|A|为0时,就意味着这个矩阵没有资格成为一个坐标系,也就是说它不可逆。先设A=[\vec{c_1},\vec{c_2}...,\vec{c_n}],其中\vec{c_i}是各个列向量。我们想想,哪些情况下矩阵A显然没有资格成为一个坐标系?

1、显然,能否构成一个坐标系,与每一个向量vi→vi→都息息相关,那么|A||A|应该是每一个向量vi→vi→的函数才能满足要求。

2、简单起见,我们函数最好是线性的,也就是说A=[\vec{c_1},\vec{c_2}...,\vec{c_n}]A'=[\vec{c_1},\vec{c_2}...,\alpha \vec{c_i},...,\vec{c_n}],那么|A′|=α|A|

3、构成n维坐标系需要n个独立的向量,如果矩阵A的n个向量中有两个相同的,那么它自然无法构成坐标系,也就是说此时|A|=0;

4、为了确定适当的缩放因子,也为了满足我们的直观感受,我们规定|I|=1。

让人意外的是,就凭以上三个性质,就可以确定唯一一个函数|A|了,那个函数就是我们课本给出的行列式计算公式!当然,推导过程有点复杂,在这里不给出了,有兴趣的朋友可以用二阶和三阶矩阵演算一下,然后类比就行了。

三维空间中三个向量能够构成一个仿射坐标系的充要条件是什么?很简单,这三个向量必须不共面!因此,推广到n维空间,很显然有:n个向量可以构成一个坐标系就意味着这些向量不共面!或者说是n个向量可以构成一个坐标系就意味着这些向量构成的一个n维平行立体(联想我们的平行六面体)体积不为0!

这里涉及到了体积,为0与否关系到矩阵可逆性,这与行列式同出一辙。这个n维体积是否和行列式有关呢?我们不妨分析一下矩阵A所构成的n维立体的体积V一些性质:

1、很明显,每一个向量\vec{c_i}也是每一条边长,那么V应该是每一个向量\vec{c_i}的函数;

2、当某个向量变为原来的α倍,那么体积也应该变成原来的|α|倍,加负号是因为向量是可以反向延伸的,但体积一定是正数;

3、有两个向量相同时,意味着这些向量“共面”,这时体积自然为0;

4、单位的n维立方体体积自然是1.

出人意料,这些性质几乎与行列式一一对应,除了第2点那个αα要加绝对值之外。那么,这些性质最终迫使这个n维立体的体积为V=ABS(|A|)V=ABS(|A|),为了不引起混乱,我用了ABS表示绝对值。

这真的是一个非常棒的事实,行列式有如此明显的几何意义,它可以用来求体积(二阶矩阵的时候就是平行四边形的面积)!这就不难解释我们一开始在解析几何课程上学到的平行六面体体积公式为什么是这样子的了。它完全就可以撇开什么点乘、叉乘而独立得到!还有很多例子,读者在学习到相关的知识时必然会感受到。但另一方面,这也反映了我们教材的糟糕:要是用我们讲述行列式的方式,我们要花多大功夫才能证明行列式就是体积?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值