《理解矩阵》有感

近期准备拾起2年前的研究工作撺论文,看了2018年发的社区发现的相关论文,发现社区发现已经做的差不多了。但是还是找了几篇还不错参考一下,看看能不能基于人家的东西做点啥。这里面就用到了谱分析。我原来对谱分析以及各种变换(傅里叶、拉普拉斯)看着就头大。现在准备好好学学这些东西了。先找了图谱论,准备看看,发现上来就碰见了图的Laplacian矩阵。到了矩阵,就又头大了,本科的时候学线性代数没好好学,另外老师也只是让死记硬背矩阵的相关运算,并没有揭露本质问题,所以我对矩阵知识也是印象不深刻。

在网上找了很多关于矩阵知识的文章之后,发现孟岩写的《理解矩阵》一系列文章写的不错,不是按照书上那种死板套路讲解的。于是认真阅读了他的文章。

例子:

达成同一个变换的结果,比如把点(1, 1)变到点(2, 3)去,你可以有两种做法。第一,坐标系不动,点动,把(1, 1)点挪到(2, 3)去。第二,点不动,变坐标系,让x轴的度量(单位向量)变成原来的1/2,让y轴的度量(单位向量)变成原先的1/3,这样点还是那个点,可是点的坐标就变成(2, 3)了。方式不同,结果一样。
       Ma = b 的意思是:

(1)“向量a经过矩阵M所描述的变换,变成了向量b。”

(2)“有一个向量,它在坐标系M的度量下得到的度量结果向量为a,那么它在坐标系I的度量下,这个向量的度量结果是b。”这里的I是指单位矩阵,就是主对角线是1,其他为零的矩阵。

 如果把M放在一个向量a的前面,形成Ma的样式,我们可以认为这是对向量a的一个环境声明。它相当于是说: “注意了!这里有一个向量,它在坐标系M中度量,得到的度量结果可以表达为a。”

b其实是Ib,Ma=b其实就是:在M坐标系里量出来的向量a,跟在I坐标系里量出来的向量b,其实根本就是一个向量啊!

这里记录个人理解和认为比较重要的知识点。

1. 空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间。空间可以容纳对象运动的。一种空间对应一类对象。

2. 有一种空间叫线性空间,线性空间是容纳向量对象运动的。运动是瞬时的,因此也被称为变换。

3. 所谓变换,其实就是空间里从一个点(元素/对象)到另一个点(元素/对象)的跃迁

4. 计算机图形学里应用的图形变换,实际上是在仿射空间而不是向量空间中进行的,所以变换矩阵是4X4的。

5. 矩阵的定义:矩阵是线性空间中运动(变换)的描述。矩阵与向量相乘,就是实施运动(变换)的过程。

6. 基:把基看成是线性空间里的坐标系就可以了。注意是坐标系,不是坐标值,这两者可是一个“对立矛盾统一体”。这样一来,“选定一组基”就是说在线性空间里选定一个坐标系。 “矩阵是线性空间中的线性变换的一个描述。在一个线性空间中,只要我们选定一组基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述。”

7. 同一个线性变换的矩阵兄弟们的一个性质,那就是:若矩阵A与B是同一个线性变换的两个不同的描述(之所以会不同,是因为选定了不同的基,也就是选定了不同的坐标系),则一定能找到一个非奇异矩阵P,使得A、B之间满足这样的关系:

A = P^(-1)BP

8. 所谓相似矩阵,就是同一个线性变换(在不同基上的)的不同的描述矩阵。同一个变换,在不同的坐标系下表现为不同的矩阵,但是它们的本质是一样的,所以本征值相同。

9. 矩阵不仅可以作为线性变换的描述,而且可以作为一组基的描述。而作为变换的矩阵,不但可以把线性空间中的一个点给变换到另一个点去,而且也能够把线性空间中的一个坐标系(基)表换到另一个坐标系(基)去。而且,变换点与变换坐标系,具有异曲同工的效果。

10. 线性空间里的基本对象是向量,而向量是这么表示的:
        [a1, a2, a3, ..., an]

矩阵是这么表示的:
        a11, a12, a13, ..., a1n
        a21, a22, a23, ..., a2n
                     ...
        an1, an2, an3, ..., ann
矩阵是一组向量组成的。

如果一组向量是彼此线性无关的话,那么它们就可以成为度量这个线性空间的一组基,从而事实上成为一个坐标系体系,其中每一个向量都躺在一根坐标轴上,并且成为那根坐标轴上的基本度量单位(长度1)。而矩阵就是由一组向量组成的,那么组成这个矩阵的那一组向量也就是线性无关的了,也就可以成为度量线性空间的一个坐标系。结论:矩阵描述了一个坐标系
11.运动等价于坐标系变换==对象的变换等价于坐标系的变换==固定坐标系下一个对象的变换等价于固定对象所处的坐标系变换

-->运动是相对的. 

12. M矩阵表示出来的那个坐标系,由一组基组成,而那组基也是由向量组成的,同样存在这组向量是在哪个坐标系下度量而成的问题。也就是说,表述一个矩阵的一般方法,也应该要指明其所处的基准坐标系。所谓M,其实是 IM,也就是说,M中那组基的度量是在 I 坐标系中得出的。M×N声明了一个在M坐标系中量出的另一个坐标系N,其中M本身是在I坐标系中度量出来的。

13.  Ma = Ib,对坐标系施加变换的方法,就是让表示那个坐标系的矩阵与表示那个变化的矩阵相乘。

ç©éµçå ä½æä¹

 

14. 矩阵MxN,一方面表明坐标系N在运动M下的变换结果,另一方面,把M当成N的前缀,当成N的环境描述,那么就是说,在M坐标系度量下,有另一个坐标系N。这个坐标系N如果放在I坐标系中度量,其结果为坐标系MxN。

(1) 从变换的观点看,对坐标系N施加M变换,就是把组成坐标系N的每一个向量施加M变换。

(2)  从坐标系的观点看,在M坐标系中表现为N的另一个坐标系,这也归结为,对N坐标系基的每一个向量,把它在I坐标系中的坐标找出来,然后汇成一个新的矩阵。

(3) 至于矩阵乘以向量为什么要那样规定,那是因为一个在M中度量为a的向量,如果想要恢复在I中的真像,就必须分别与M中的每一个向量进行內积运算。

15. 张量

数字的有序组合产生了向量,向量的有序组合产生了矩阵。这样两个新构造出来的对象,作用一个比一个大。那么有人会联想到:矩阵的有序组合,就可以产生一个“立方阵”,它的功能会不会更加强大?更一般的,n维立方阵呢?这种联想是有道理的,数学上也有这样的研究对象,它就是张量

最通俗的说法,n阶张量就是一个n维立方阵,所以0阶张量就对应一个数,向量、矩阵分别对应1阶和2阶张量,我们所说的三维立方阵,就是3阶张量啦。

16. 矩阵M的行列式实际上是组成M的各个向量按照平行四边形法则搭成一个n维立方体的体积.可以参考https://www.bilibili.com/video/av5987715?from=search&seid=16213828939248415146

参考文献:

https://blog.csdn.net/myan/article/details/647511

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值