slam
taotao1233
这个作者很懒,什么都没留下…
展开
-
基于功能安全的车道级定位精度分析
自动驾驶常常提到定位精度问题,很多厂商对外宣称的定位精度基本上差不多。比如某业界领先的M公司,其定位Lateral 6cm 1 sigmaLongitude 15cm 1 sigma0.1 Yaw degree derivation10cm map error...原创 2020-02-15 15:55:17 · 4733 阅读 · 1 评论 -
NDT Matching 算法学习
问题背景 近来从事毫米波雷达的定位与建图工作,想拓展下工作思路,研究autoware公司的激光点云定位与建图。期间正好发现autoware的激光点云配准算法是NDT(Normal-Distributions Transform),相比ICP算法,它能更快速高效地确定两个大型点云的刚性变换。这里分别介绍下2003年经典的2D NDT算法,以及autoware日本团队在2006年提出的3D ND...原创 2020-01-04 00:10:48 · 9108 阅读 · 3 评论 -
robots_estimation and learning之雷达定位
本次课程讲解,假设在给定地图的情况下,如何根据机器人测量进行定位,如何使用机器人定位算法估计每个时刻机器人的位姿。作业是利用粒子滤波求解机器人定位或跟踪问题。一、里程模型Odometry Model1.各种定位传感器概述在汽车全球导航应用里,用于定位的信息源有gps,通信运营商基站,wifi热点。这几类信息的精度各不相同,gps是3.5米,基站是600米,wifi是40米。但是对于无人...原创 2018-08-25 21:59:33 · 2430 阅读 · 1 评论 -
robots_estimation and learning之occupancy建图
本次博文是cousera的第三次课程,主要涉及slam建图,没有特别复杂的算法,几乎都是概念理解。我们知道地图,是对机器人所在环境的空间建模(spatial model)。那么,机器人是怎么理解地图得?地图该包含哪些信息?使用什么样的坐标系?如何合理的解析传感器数据?SLAM建图的难点在哪里? 地图的种类Metric Map这类地图的位置用坐标表示Topological M...原创 2018-08-18 09:51:42 · 986 阅读 · 0 评论 -
robots_estimation and learning之卡尔曼滤波
本次博文为cousera的第二次作业,涉及卡尔曼滤波,分别讲述了:为什么要有运动估计 卡尔曼滤波器如何对运动状态建模 如何用贝叶斯滤波求解运动方程,其主观物理含义是什么 如果运动方程和观测方程是非线性的怎办一、为什么要有运动估计我们知道slam前端视觉里程计能给出一个短时间内的轨迹,但由于不可避免的误差累积,这个轨迹在长时间内是不准确的。如下图所示: 每个黑点代表视觉...原创 2018-08-08 20:30:52 · 1108 阅读 · 0 评论 -
robots_estimation and learning之混合高斯模型
近来slam技术在无人汽车领域比较火热,所以现在打算把cousera上的robots_estimation and learning的4周课程刷一遍。做作业做了,但是没有提交(之前买的课到期了),所以也就没有验证正确性。 一、课程背景介绍我们知道SLAM问题的本质,对运动主体自身和周围环境空间不确定性的估计。本次课程属于slam技术的后端优化模块,我们将会从有噪声的、不完整的、...原创 2018-07-30 23:46:26 · 818 阅读 · 0 评论 -
最小二乘优化问题
这里给大家介绍一下最小二乘优化问题,然后举例里程计校准odometry calibration加深印象。问题描述假设现有系统由nnn个观测函数描述 {fi(x)}i=1..n\lbrace f_{i}(x) \rbrace_{i=1..n}{fi(x)}i=1..n,其中xxx是状态向量,ziz_izi是状态xxx的测量,...原创 2019-04-10 22:44:25 · 9939 阅读 · 0 评论