2015年IMO第3题

△ A B C \triangle ABC ABC 的垂心为 H H H, A H AH AH 为直径的圆交 △ A B C \triangle ABC ABC 的外接圆 ⨀ O \bigodot O O A A A, Q Q Q. H Q HQ HQ 为为直径的圆交 ⨀ O \bigodot O O Q Q Q, K K K. M M M B C BC BC 边中点, F F F A A A B C BC BC 边的投影. 求证: ( M F K ) (MFK) (MFK) ( H Q K ) (HQK) (HQK) K K K.

在这里插入图片描述

证明:

在这里插入图片描述
设点 A A A 的对径点为 A ′ A' A. 易知 A ′ B H C A'BHC ABHC 构成平行四边形. 所以 M M M, H H H, A ′ A' A 共圆.
延长 A H AH AH ( A B C ) (ABC) (ABC) 于点 H 1 H_1 H1, 则 ∠ A A ′ H 1 = π 2 \angle AA'H_1=\frac{\pi}{2} AAH1=2π, A H 1 / / B C AH_1//BC AH1//BC, 易知 H F = H 1 F HF=H_1F HF=H1F.

延长 M H MH MH ⨀ O \bigodot O O Q ′ Q' Q. 则 M H ⋅ H Q ′ = 1 2 H A ′ ⋅ H Q MH \cdot HQ'= \frac{1}{2} HA' \cdot HQ MHHQ=21HAHQ ‘= 1 2 H A ⋅ H H ′ = H F ⋅ H A \frac{1}{2} HA \cdot HH'=HF \cdot HA 21HAHH=HFHA. 所以 A A A, Q ′ Q' Q, F F F, M M M 共圆. ∠ A Q ′ H = π 2 \angle AQ'H=\frac{\pi}{2} AQH=2π, Q ′ Q' Q 即为 Q Q Q.

在这里插入图片描述

过点 K K K H K HK HK 的垂线, 设其与直线 B C BC BC 的交点为 X X X.

∠ H 1 K X = ∠ Q A H 1 = ∠ H 1 M X \angle H_1KX=\angle QAH_1=\angle H_1MX H1KX=QAH1=H1MX, 所以 M M M, H 1 H_1 H1, X X X, K K K 四点共圆.

在这里插入图片描述

Q Q Q 在高 A F AF AF 上的投影为 D D D. 只需证明 F H ⋅ F D / F K 2 = M H ⋅ M Q / M K 2 FH \cdot FD/FK^2=MH \cdot MQ/MK^2 FHFD/FK2=MHMQ/MK2.

F H / M H = sin ⁡ ∠ H M F FH/MH=\sin \angle HMF FH/MH=sinHMF.

F K / M K = 2 r 1 cos ⁡ ∠ H X F 2 r 2 cos ⁡ ∠ H X M = r 1 r 2 = 2 r 1 sin ⁡ ∠ H X F 2 r 2 sin ⁡ ∠ H X M = H F / M H = sin ⁡ ∠ H M F FK/MK=\frac{2r_1\cos \angle HXF}{2r_2\cos \angle HXM}=\frac{r_1}{r_2}=\frac{2r_1 \sin \angle HXF}{2r_2 \sin \angle HXM}=HF/MH=\sin \angle HMF FK/MK=2r2cosHXM2r1cosHXF=r2r1=2r2sinHXM2r1sinHXF=HF/MH=sinHMF.

其中, r 1 r_1 r1, r 2 r_2 r2 分别为 ( K X F ) (KXF) (KXF), ( K X M ) (KXM) (KXM) 的半径. 所以 F H / M H = F K / M K FH/MH=FK/MK FH/MH=FK/MK, F H / F K = M H / M K FH/FK=MH/MK FH/FK=MH/MK.

所以只需证 F D / F K = M Q / M K FD/FK=MQ/MK FD/FK=MQ/MK, 等价于 F D / M Q = F K / M K FD/MQ=FK/MK FD/MQ=FK/MK, 易知 H Q / A H = K F / M K = sin ⁡ ∠ H A Q HQ/AH=KF/MK=\sin \angle HAQ HQ/AH=KF/MK=sinHAQ. 所以其成立.

证毕.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值