fastText之我所见(一)

本文介绍了fastText,一个轻量级的文本分类和表示学习库,性能媲美深度学习且速度更快。fastText结合了词袋模型、n-gram和子字信息,提供了一种有效的方法来处理文本任务。文章涵盖了fastText的基本概念、构建和选项,还探讨了它与word2vec的异同。
摘要由CSDN通过智能技术生成

 

                                   fastText之我所见(一)

本系列blog重点介绍fasttext快速文本分类器的历史、原理以及实战等,主要有(一)(二)两个教程share给大家。教程(一)主要介绍fastTest,教程(二)主要从代码的角度来实战。

笔者信息:Next_Legend  QQ:1219154092 人工智能 自然语言处理 图像处理 神经网络 高维信息处理

                                                                                                                                                    ——2018.7.31于天津大学

一、What is fastTest?

FastText is an open-source, free, lightweight library that allows users to learn text representations and text classifiers. It works on standard, generic hardware. Models can later be reduced in size to even fit on mobile devices.

FastText是一个开源的、免费的、轻量级的库,允许用户学习文本表示和文本分类器。它适用于标准的通用硬件。模型可以在以后缩小,甚至可以在移动设备上使用。

fasttext是facebook开源的一个词向量与文本分类工具,在2016年开源,典型应用场景是“带监督的文本分类问题”。提供简单而高效的文本分类和表征学习的方法,性能比肩深度学习而且速度更快。

fastText结合了自然语言处理和机器学习中最成功的理念。这些包括了使用词袋以及n-gram袋表征语句,还有使用子字(subword)信息,并通过隐藏表征在类别间共享信息。我们另外采用了一个softmax层级(利用了类别不均衡分布的优势)来加速运算过程。

该工具的作者有以下几位:</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值