1、转矩和惯量折算
惯量定义为物体绕着一个旋转轴产生角加速度变化的阻抗,即惯量阻碍运动的变化。
∑ T = J α (1-1) \sum T=J\alpha \tag{1-1} ∑T=Jα(1-1)
T T T为转矩, α \alpha α为角加速度。
与牛顿第二定律的传统形式 ∑ F = m α \sum F=m\alpha ∑F=mα比较,旋转运动中的惯量与直线运动中的质量等价。基于这个类比,旋转与平移的质量在驱动铰链设计中都简单视作惯量处理。
N G B = 电机速度 负载速度 (1-2) N_{GB}=\frac{电机速度}{负载速度} \tag{1-2} NGB=负载速度电机速度(1-2)
两齿轮啮合,其切线速度相等:
v = ω m r m = ω 1 r 1 (1-3) v=\omega_m r_m=\omega_1 r_1 \tag{1-3} v=ωmrm=ω1r1(1-3)
N G B = ω m ω 1 = r 1 r m = n 1 n m (1-4) N_{GB}=\frac{\omega_m}{\omega_1}=\frac{r_1}{r_m}=\frac{n_1}{n_m} \tag{1-4} NGB=ω1ωm=rmr1=nmn1(1-4)
ω \omega ω为角速度, r r r为半径, n n n为齿数。
另一种决定齿轮比的方法,就是使用齿轮驱动输入和输出轴上的转矩。假定效率为100%,通过齿轮传递的功率 P P P为常数,则有:
P = T m ω m = T 1 ω 1 (1-5) P=T_m\omega_m=T_1\omega_1 \tag{1-5} P=Tmωm=T1ω1(1-5)
N G B = ω m ω 1 = r 1 r m = n 1 n m = T 1 T m (1-6) N_{GB}=\frac{\omega_m}{\omega_1}=\frac{r_1}{r_m}=\frac{n_1}{n_m}=\frac{T_1}{T_m} \tag{1-6} NGB=ω1ωm=rmr1=nmn1=TmT1(1-6)
对于a)图直接耦合方式,负载的运动方程为:
T m = J l o a d d 2 θ m d t 2 (1-7) T_m=J_{load}\frac{d^2\theta_m}{dt^2} \tag{1-7} Tm=Jloaddt2d2θm(1-7)
对于齿轮箱啮合的情况b):
T 1 = J l o a d d 2 θ 1 d t 2 (1-8) T_1=J_{load}\frac{d^2\theta_1}{dt^2} \tag{1-8} T1=Jloaddt2d2θ1(1-8)
根据公式(1-6),可以得到:
T 1 = r 1 r m T m = J l o a d d 2 θ 1 d t 2 (1-9) T_1=\frac{r_1}{r_m}T_m=J_{load}\frac{d^2\theta_1}{dt^2} \tag{1-9} T1=rmr1Tm=Jloaddt2d2θ1(1-9)
齿轮组旋转时,沿各齿圆周走过的距离时相等的,即:
r 1 θ 1 = r m θ m (1-10) r_1\theta_1=r_m\theta_m \tag{1-10} r1θ1=rmθm(1-10)
对上式两边进行两次微分:
r 1 d 2 θ 1 d t 2 = r m d 2 θ m d t 2 (1-11) r_1\frac{d^2\theta_1}{dt^2}=r_m\frac{d^2\theta_m}{dt^2} \tag{1-11} r1dt2d2θ1=rmdt2d2θm(1-11)
将式(1-11)带入(1-9)得到:
r 1 r m T m = J l o a d r m r 1 d 2 θ m d t 2 (1-12) \frac{r_1}{r_m}T_m=J_{load}\frac{r_m}{r_1}\frac{d^2\theta_m}{dt^2} \tag{1-12} rmr1Tm=J<