『欧拉-拉格朗日方程』在控制科学中

最开始接触欧拉拉格朗日方程还是在理论力学中,\frac{\partial L}{\partial q} - \frac{d L}{d t} \frac{\partial L}{\partial \dot{q}}= 0 ,其中,q代表自由度,L代表能量方程,在几种不同的情况下能量方程的含义和等式右边也有所不同,如上图所示,通过该方程就可以建立系统运动微分方程,求解一系列力学问题。后来学习非线性控制时,发现也有欧拉拉格朗日方程的身影,这次是在一般形式下,从最小化代价函数的角度出发求解最优路径的问题。今天着重描述一下后者:

(后来才知道,本质上这两个都属于数学中的变分法,我以为两个不同的东西竟然能统一起来真的很神奇,但本质上他们就是同一个东西。不得不感慨,数学在工科中真的是降维打击。当然纯数学的理论我也不是很懂,欢迎各路大神批评指正!)

以下内容参考了慕尼黑工业大学Boris Lohmann 教授的 现代控制理论2 讲义:

考虑如下形式的代价函数:

J = \int_{t_{0}}^{t_{e}}g(\mathbf{x}, \mathbf{\dot{x}}, t) \stackrel{!}{=} min

其中 t_{0}, t_{e}, \mathbf{x_{0}}, \mathbf{x_{e}}为已知,求最优的路径 \mathbf{x}(t)

我们假设最优路径为\mathbf{x}^{*}(t) ,那么,其他有偏差的非最优路径我们可以表示为:\mathbf{x}(t, \epsilon) = \mathbf{x}^{*}(t) + \epsilon \cdot\mathbf{\tilde{x}}(\mathbf{x}) ,其中,\mathbf{\tilde{x}}(\mathbf{x}) 为变化量或者说偏差量,\epsilon 是一个有正上确界的小量。很自然,当 \epsilon值为0时,轨迹为最优轨迹,在此时 \tilde{\mathbf{x}}(t)是任意的,那么我们令:\tilde{\mathbf{x}}(t_{0}) = \mathbf{0}, \tilde{\mathbf{x}}(t_{e}) = \mathbf{0} ,这样,原来的初始状态和最终状态都没有发生改变。

通过以上的论述我们不难将一般化轨迹的代价函数写为一个关于 \epsilon 的函数:

J = \int_{t_{0}}^{t_{e}}g(\mathbf{x}^{*} + \epsilon\mathbf{\tilde{x}} , \mathbf{\dot{x}}^{*} + \epsilon \mathbf{\dot{\tilde{x}}}, t) = F(\epsilon)

一般的,我们处理极值问题即是将函数求导以后令导数等于0,这里我们又预先知道 为0时该代价函数最小,于是有:\frac{d F}{d\epsilon}|_{\epsilon = 0} = 0 。接下来我们将等式左边展开,看看会得到什么 (以下数学过程见图片里的手动推导)

细心的同学可能已经发现了,此时我们熟悉的欧拉拉格朗日方程又一次闪亮登场:

\frac{\partial g}{\partial \mathbf{x}} - \frac{d}{dt}\frac{\partial g}{\partial \mathbf{\dot{x}}}= \mathbf{0}

即,当代价函数已知并满足我们上述的几个假设时,满足上面方程的轨迹 即为最优轨迹。额外的,当上述假设不成立时,我们需要在这个方程的基础上增加一些条件再进行求解。后续我还会更新以下非线性控制的内容,这个方程在那里也会被频繁用到。

以上,如有不当之处,欢迎各路大神指出,并批评指正!

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值