NURBS 曲面

p x q 次NURBS曲面

有理分式表示

一个在u次方向p次、v方向q次的NURBS曲面

式中,P_{i,j},i=0,1,...,m,j=0,1,2,...,n 构成控制网络。
规定四角顶点处用正权因子即 W_{00},W_{m0},W_{0n},W_{mn}>0 其余 W_{ij}\geq 0 , 且顺序 p x q 个权因子不同时为 0 ,


双线性曲面
设 P_{00},P_{10},P_{01},P_{11} 是三维空间的4个点,双线性曲面是通过四条边界线 
P_{00}P_{10} \,, P_{01}P_{11} \,, P_{00}P_{01} \,, P_{10}P_{11} 之间进行双线性差值构成的NURBS表示形式。双线性曲面定义为:


 

一般柱面

绘制柱面时,首先生成一条截面轮廓线,又称准线。准线可以是开曲线,也可以是闭曲线。准线为u方向的一条定义在节点矢量U上的p次NURBS曲线,有理基函数表示为:


式中,R_{i,p}(u) 为p次有理基函数。P_{i,0} 为准线控制多边形顶点,相应的权因子为 W_{i,0} , 设d是柱面高度方向的单位矢量。柱面p(u, v)的表达式是将准线p(u)沿方向d平行扫描距离h得到的。记扫描方向的参数为v, 且 v\in [0,1]。故柱面可视为准线平移扫描生成的曲面。一般柱面可表示为:


式中,有理基函数 R_{i,p; j,q}(u,v) 由节点矢量U和V及权因子决定。曲面u方向的次数为p。由于曲面v方向的次数为1,所以v=[0,0,1,1]。控制点  P_{i,1}=P_{i,0}+h \times d  , 权值为 W_{i,1}=W_{i,0} , i=0,1,...,m 曲面的v方向参数是直母线。因此一般柱面也可视为直母线一个端点沿着准线运动平移扫掠生成的曲面。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值