paper
文章平均质量分 80
记录备忘
Mr.Q
纸上得来终觉浅,绝知此事要躬行。 ---陆游
展开
-
人脸关键点数据集WFLW
关键点数据集介绍原创 2024-09-13 18:34:30 · 483 阅读 · 0 评论 -
Deep Learning-Based Object Pose Estimation:A Comprehensive Survey
基于深度学习的目标姿态估计:一份综合的调研原创 2024-09-12 10:36:05 · 875 阅读 · 0 评论 -
缺陷检测-Mixed supervision for surface-defect detection:from weakly to fully supervised learning
缺点:(1)分割模块只有下采样,没有上采样,最后的分割精度会下降。(2)且没有跳层连接(类似resnet或者unet结构),浅层信息会丢失,不利于多尺度缺陷检测。原创 2024-02-18 16:42:18 · 721 阅读 · 0 评论 -
实现pytorch版的mobileNetV1
这里是根据网络结构,搭建模型,用于图像分类任务。原创 2024-01-06 18:33:09 · 890 阅读 · 0 评论 -
轻量化网络-MobileNet系列
(2)不同的是组件不再是一种深度可分离卷积,而是水桶型结构:先1x1卷积通道升维,再深度卷积,再接1x1卷积(也就是逐点卷积)降维,这里与Resnet刚好相反(所以叫。深度可分类卷积:将普通卷积(核大小5x5x3)拆分成深度卷积(核大小5x5x1),逐点卷积(核大小1x1x3),过程如下图。(2)逐点卷积(就是1x1的卷积),逐个点去卷积,一个卷积(核大小1x1x3)去卷8x8x3,得到8x8x1特征图。(1)深度卷积,逐个通道去卷积,一个卷积(核大小5x5x1)去卷12x12x3,得到8x8x3特征图。原创 2024-01-04 17:20:18 · 1556 阅读 · 0 评论 -
shufflenet unit原理和实现
前言解决的问题:分组卷积的输出之和前面部分输入相关。提出shufflenet unit. 在1x1的卷积后,把组内的特征,再分成g组,随机关联到后面的g组,然后对每一组都如此。论文ShufflfleNet: An Extremely Effificient Convolutional Neural Network for Mobile Devices https://arxiv.org/pdf/1707.01083v1.pdfshufflenet unit原理图片(a)原创 2021-08-11 14:17:11 · 447 阅读 · 0 评论 -
PaDiM 无监督异常检测和定位-论文和源码阅读
思路:数据特征的分布被假定为一个多元高斯分布,异常值通常在多元高斯分布中表现为远离数据集的中心(均值向量)的数据点。协方差矩阵可以描述各个特征之间的相关性和离散程度。通过计算数据点相对于协方差矩阵的马氏距离,可以识别潜在的异常点。原创 2023-11-02 11:34:29 · 811 阅读 · 0 评论 -
efficientAD 源码阅读
(1)teacher和student网络结构是一样的,只是teacher的最后一个卷积输出通道翻倍。(1)image_ae和image_st是同样的图片,只不过image_ae多了一个颜色数据增强;(1)image_ae和image_st是同样的图片,只不过image_ae多了一个颜色数据增强;(2)student不是在预训练数据集上进行训练,而是在具体的应用项目中无异常图像上训练。(1)teacher是图像分类数据集的预训练模型,或者是这种预训练网络的蒸馏版本;(2)注意:没有bn操作。原创 2023-10-25 21:13:41 · 1160 阅读 · 1 评论 -
pointnet和pointnet++点云分割和分类
(2)论文中n是1024(均匀采样),论文中只用到了(x,y,z)坐标,所以输入是nx3点云矩阵,首先经过mlp(64,64),即两个多层感知机全连接网络,维度变化3->64->64,输出nx64特征向量;(2)网络输入的是Nx(d+C)矩阵,N是点个数,d维坐标,C维点特征,输出矩阵是N'x(d+C'),其中N'是采样后的点个数,C'是点特征向量维度。(3)分割输出:分割分支输出的是nxm的矩阵scores,有n个点,每个点有m个分数,m个分数对应m个语义分割类别,哪个值大,当前点就属于哪个类别。原创 2023-10-17 09:25:05 · 2458 阅读 · 0 评论 -
PF-Net基于深度学习的点云补全网络
cvpr2020 PF-Net点云补全技术原创 2022-12-03 16:27:12 · 5626 阅读 · 65 评论 -
iterative farthest point sample (IFPS or FPS)
迭代最远距离采样,在点云论文PointNet++和PF-Net中用于对点云数据下采样。原创 2022-12-06 10:53:02 · 1028 阅读 · 0 评论 -
cvpr2023-目标检测-Combating noisy labels in object detection datasets
我们都知道数据对于深度学习模型的重要性,但是如何省时省力的得到高质量的数据呢?这就是此文章探讨的问题。原创 2023-03-07 23:23:59 · 2371 阅读 · 2 评论 -
经典论文回顾-YOLOv1(代码详解)
yolo v1代码逐行解析原创 2021-12-22 18:00:22 · 4066 阅读 · 9 评论 -
小目标检测-Augmentation for small object detection
目录1.论文地址2.解决什么问题3.出现问题的原因4.解决办法4.1 过采样4.2 复制粘贴1.论文地址https://arxiv.org/abs/1902.07296https://arxiv.org/abs/1902.072962.解决什么问题检测小目标的能力,往往弱于检测大目标(AP值低2到3倍)。注:0<area<32x32:小目标32x32<area<96x96: 中等目标96x96<area: 大目..原创 2021-10-08 18:22:15 · 469 阅读 · 0 评论 -
CVPR 2018 Saliency Detection 论文
1.Deep Unsupervised Saliency Detection: A Multiple Noisy Labeling PerspectiveJing Zhang1,2, Tong Zhang2,3, Yuchao Dai†1, Mehrtash Harandi2,3, and Richard Hartley21 中国西北工业大学,戴玉超教授;2 澳大利亚国立大学 ;...原创 2018-07-08 15:52:16 · 7123 阅读 · 0 评论 -
【论文】Saliency Detection: A Spectral Residual Approach阅读笔记
一、思路:从信息论的角度看,有效编码可以将图片H中信息分为两部分:$$H(Image) = H(Innovation) + H(Prior Knowledge)$$Innovation变化,即为显著部分;Prior Knowledge先验知识,即为背景部分,冗余部分。相似就代表着冗余。对一个系统而言要最小化视觉的冗余信息,它必须知道输入图片的统计相似性(即所有图片平均特性)。那...原创 2018-06-19 19:40:59 · 1128 阅读 · 0 评论