显卡日志
【数据下载】链接:链接: https://pan.baidu.com/s/1CjfdtavEywHtZeWSmCGv3A.
密码::4mui
下面给出了3090显卡的性能测评日志结果,每一条日志有如下结构:
Benchmarking #2# #4# precision type #1#
#1# model average #2# time : #3# ms
其中#1#代表的是模型名称,#2#的值为train(ing)或inference,表示训练状态或推断状态,#3#表示耗时,#4#表示精度,其中包含了float, half, double三种类型,下面是一个具体的例子:
Benchmarking Inference float precision type resnet50
resnet50 model average inference time : 13.426570892333984 ms
请把日志结果进行整理,变换成如下状态,model_i用相应模型名称填充,按照字母顺序排序,数值保留三位小数:
Train_half | Train_float | Train_double | Inference_half | Inference_float | Inference_double | |
---|---|---|---|---|---|---|
cmodel_1 | 0.954 | 0.901 | 0.357 | 0.281 | 0.978 | 1.130 |
model_2 | 0.360 | 0.794 | 0.011 | 1.083 | 1.137 | 0.394 |
运行:
#链接左右代码
res=pd.concat([df1,df2],axis=1).pivot(index=['model2','type2'],columns='pricision',# values='time_val').unstack(1)
res.columns=res.columns.map(lambda x :x[1]+'_'+x[0])
res=res.sort_index(axis=1,ascending=False)
抽出 #2# 的值为值为train(ing)或inference
#4# 精度和 #1# 模型中的 2and4
前期知识不老牢固的话,后期会很痛苦…