目录
poly函数的功能是具有指定根的多项式或特征多项式。
语法
p = poly(r)
p = poly(A)
说明
p = poly(r)(其中 r 是向量)返回多项式的系数,其中多项式的根是 r 的元素。
p = poly(A)(其中 A 是 n×n 矩阵)返回矩阵 det(λI – A) 的特征多项式的 n+1 个系数。
示例
来自特征值的特征多项式
计算矩阵 A
的特征值。
A = [1 8 -10; -4 2 4; -5 2 8]
A = 3×3
1 8 -10
-4 2 4
-5 2 8
e = eig(A)
e = 3×1 complex
11.6219 + 0.0000i
-0.3110 + 2.6704i
-0.3110 - 2.6704i
由于 e 中的特征值是 A 的特征多项式的根,使用 poly 可确定来自 e 中的值的特征多项式。
p = poly(e)
p = 1×4
1.0000 -11.0000 0.0000 -84.0000
矩阵的特征多项式
使用 poly 来计算矩阵 A 的特征多项式。
A = [1 2 3; 4 5 6; 7 8 0]
A = 3×3
1 2 3
4 5 6
7 8 0
p = poly(A)
p = 1×4
1.0000 -6.0000 -72.0000 -27.0000
使用 roots 计算 p 的根。特征多项式的根是矩阵 A 的特征值。
r = roots(p)
r = 3×1
12.1229
-5.7345
-0.3884
参数说明:
r
— 多项式根
A
— 输入矩阵
p
— 多项式系数
提示
-
对于向量,r = roots(p) 和 p = poly(r) 互为反函数,负责舍入误差、排序和缩放。