MATLAB中bounds函数用法

目录

语法

说明

示例

向量的最小值和最大值

矩阵行的最小值和最大值

数组页的边界

包括缺失值的边界


        bounds函数的功能是返回数组的最小值和最大值。

语法

[minA,maxA] = bounds(A)
[minA,maxA] = bounds(A,"all")
[minA,maxA] = bounds(A,dim)
[minA,maxA] = bounds(A,vecdim)
[minA,maxA] = bounds(___,missingflag)

说明

        [minA,maxA] = bounds(A) 返回数组中的最小值 minA 和最大值 maxA。minA 等效于 min(A),而 maxA 等效于 max(A)。

        [minA,maxA] = bounds(A,"all") 计算 A 的所有元素的最小值和最大值。

        [minA,maxA] = bounds(A,dim) 沿 A 的维度 dim 执行运算。例如,如果 A 是矩阵,则 bounds(A,2) 返回包含每行最小值和最大值的列向量 minA 和 maxA。

        [minA,maxA] = bounds(A,vecdim) 基于向量 vecdim 中指定的维度计算最小值和最大值。例如,如果 A 是矩阵,则 bounds(A,[1 2]) 将返回 A 中所有元素的最小值和最大值,因为矩阵的每个元素都包含在由维度 1 和 2 定义的数组切片中。

        [minA,maxA] = bounds(___,missingflag) 指定在上述任一语法的基础上是省略还是包含 A 中的缺失值。例如,bounds(A,"missingflag") 在计算最小值和最大值时会包括所有缺失值。默认情况下,bounds 会忽略缺失值。

示例

向量的最小值和最大值

        同时计算向量的最小值和最大值。

A = [2 4 -1 10 6 3 0 -16];
[minA,maxA] = bounds(A)
minA = -16
maxA = 10

矩阵行的最小值和最大值

        计算矩阵每行的最小值和最大值。

A = magic(4)
A = 4×4

    16     2     3    13
     5    11    10     8
     9     7     6    12
     4    14    15     1

[minA,maxA] = bounds(A,2)
minA = 4×1

     2
     5
     6
     1

maxA = 4×1

    16
    11
    12
    15

数组页的边界

        创建一个三维数组并计算每页数据(行和列)的最小值和最大值。

A(:,:,1) = [2 4; -2 1];
A(:,:,2) = [9 13; -5 7];
A(:,:,3) = [4 4; 8 -3];
[minA1,maxA1] = bounds(A,[1 2]);
minA1
minA1 = 
minA1(:,:,1) =

    -2


minA1(:,:,2) =

    -5


minA1(:,:,3) =

    -3

maxA1
maxA1 = 
maxA1(:,:,1) =

     4


maxA1(:,:,2) =

    13


maxA1(:,:,3) =

     8

        要计算数组的所有维度的边界,可以在向量维度参数中指定每个维度,或使用 "all" 选项。

[minA2,maxA2] = bounds(A,[1 2 3])
minA2 = -5
maxA2 = 13
[minAall,maxAall] = bounds(A,"all")
minAall = -5
maxAall = 13

包括缺失值的边界

        创建一个包含 NaN 值的矩阵。

A = [2 NaN 6 -5; 0 3 NaN 9]
A = 2×4

     2   NaN     6    -5
     0     3   NaN     9

        计算矩阵的最小值和最大值,包括 NaN 值。对于包含任何 NaN 值的矩阵列,最小值和最大值为 NaN。

[minA,maxA] = bounds(A,"includenan")
minA = 1×4

     0   NaN   NaN    -5

maxA = 1×4

     2   NaN   NaN     9

### 回答1: ksdensity函数Matlab中用于估计概率密度函数函数,它的用法如下: ksdensity(data):对数据data进行核密度估计,返回估计的概率密度函数。 ksdensity(data, x):对数据data进行核密度估计,返回在x处估计的概率密度函数。 ksdensity(data, 'function', 'pdf'):对数据data进行核密度估计,返回估计的概率密度函数。 ksdensity(data, 'function', 'cdf'):对数据data进行核密度估计,返回估计的累积分布函数。 ksdensity(data, 'support', 'positive'):对数据data进行核密度估计,限制估计的概率密度函数在非负区间上。 ksdensity(data, 'support', 'bounded', 'bounds', [a, b]):对数据data进行核密度估计,限制估计的概率密度函数在[a, b]区间上。 ksdensity(data, 'kernel', 'epanechnikov'):对数据data进行核密度估计,使用Epanechnikov核函数。 ksdensity(data, 'kernel', 'normal'):对数据data进行核密度估计,使用正态核函数。 ksdensity(data, 'width', h):对数据data进行核密度估计,使用带宽h。 ksdensity(data, 'function', 'icdf', 'alpha', p):对数据data进行核密度估计,返回估计的累积分布函数的逆函数在p处的估计值。 其中,data为输入的数据,x为需要估计概率密度函数的位置,'function'为估计的函数类型,'support'为估计的区间类型,'bounds'为估计的区间范围,'kernel'为核函数类型,'width'为带宽,'alpha'为累积分布函数的概率值。 ### 回答2: ksdensity函数MATLAB中一个非常有用的概率密度估计函数,它可以根据给定数据样本生成核密度估计曲线,便于对数据分布进行分析和处理。 ksdensity函数的语法如下: [h,f]=ksdensity(data) 其中,data为输入数据向量,h为密度值向量,f为概率密度函数对应的取值向量。 ksdensity函数的原理是利用核函数对数据样本进行平滑处理,生成密度估计曲线。核函数可以采用高斯核函数(默认)或Epanechnikov内核函数。 ksdensity函数在实际中广泛应用于信号处理、图像处理、统计分析等领域。在数据可视化方面,可以通过ksdensity函数生成概率密度曲线,同时与原始数据进行比较,以评估数据分布是否符合正态分布等基本假设,进而进行相应的假设检验。 除了以上基本用法外,ksdensity函数还具有一些相关的参数和选项,可以根据具体需求进行设置,如窗宽、内核类型、面积归一化等参数设置。可以通过help命令或者官方文档进行详细学习和了解。 总之,ksdensity函数是一个十分重要的MATLAB函数,可以有效地评估数据分布、进行统计分析、进行数据可视化,是MATLAB用户必不可少的编程工具之一。 ### 回答3: Matlab中ksdensity函数是一种核密度估计方法,它可以用来估计随机变量的概率密度函数。该函数可以用于一维和二维的数据,并且还支持在三维空间中可视化。 ksdensity函数的基本语法是:[f,xi] = ksdensity(x),其中x是一个包含观测值的向量,f是概率密度估计值的向量,xi是用于绘制概率密度函数的x轴坐标向量。该函数还有其他可选参数,例如bandwidth,该参数用于控制概率密度函数估计的平滑度。 使用ksdensity函数的第一步是加载数据。可以直接将需要估计概率密度函数的数据导入Matlab中,或者通过读取文件的方式将数据导入到Matlab中。一旦数据加载完成,就可以使用ksdensity函数来估计概率密度函数,并可视化结果。 对于一维数据,可以将概率密度函数绘制成一条曲线。在二维情况下,可以通过使用contour函数将概率密度函数绘制成等高线图。在可视化三维数据时,可以使用surf函数将概率密度估计图绘制成一个平面。 总之,使用Matlab中ksdensity函数可以快速轻松地估计并可视化概率密度函数。它非常有用,尤其是在需要快速分析数据分布时。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值