[数学]变分初涉

变分初涉

变分定义

设函数 y = f ( x ) y=f(x) y=f(x) 过两个端点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0) ( x 1 , y 1 ) (x_1, y_1) (x1,y1), 任取过 ( x 0 , 0 ) (x_0, 0) (x0,0) ( x 1 , 0 ) (x_1, 0) (x1,0) 的光滑可导函数 η ( x ) \eta(x) η(x), 设无穷小为 ϵ \epsilon ϵ, 则定义函数 f f f 的变分为 δ y = ϵ η \delta y=\epsilon\eta δy=ϵη

相应地, 定义 δ y ′ = ( δ y ) ′ = ϵ η ′ δ y ′ ′ = ( δ y ) ′ ′ = ϵ η ′ ′ \delta y'= (\delta y)'=\epsilon\eta' \\ \delta y''=(\delta y)''=\epsilon\eta'' δy=(δy)=ϵηδy=(δy)=ϵη 等. 注意, 一般在同一个上下文中, 所有函数的变分共用一个 η \eta η 函数及其导数, 故有 d ( δ y ) d x = δ ( d y d x ) \frac{\text d(\delta y)}{\text dx}=\delta\left(\frac{\text dy}{\text dx}\right) dxd(δy)=δ(dxdy)

以上定义和自变量 x x x 的微分 d x \text dx dx 一样, 单独取出来考虑并无实际意义.
现在在此基础上, 考虑关于函数 f f f 的泛函 F ( x , y , y ′ ) F(x,y,y') F(x,y,y), 定义泛函的变分为 δ F = F ( x , y + δ y , y ′ + δ y ′ ) − F ( y , y ′ ) \delta F=F(x,y+\delta y,y'+\delta y')-F(y,y') δF=F(x,y+δy,y+δy)F(y,y)

得到 δ F = ∂ F ∂ y δ y + ∂ F ∂ y ′ δ y ′ \delta F = \frac{\partial F}{\partial y}\delta y + \frac{\partial F}{\partial y'}\delta y' δF=yFδy+yFδy

一般地, 泛函 F ( x , y , y ′ , y ′ ′ , ⋯   ) F(x,y,y',y'',\cdots) F(x,y,y,y,) 亦有 δ F = ∑ i = 0 ∞ ∂ F ∂ y ( i ) δ y ( i ) \delta F=\sum_{i=0}^{\infin}\frac{\partial F}{\partial y^{(i)}}\delta y^{(i)} δF=i=0y(i)Fδy(i)

例如
δ ( y y ′ ) = y ′ δ y + y δ y ′ \delta(yy')=y'\delta y+y\delta y' δ(yy)=yδy+yδy

泛函极值

变分学的泛函指的是将函数映射为值的映射.

给予两个定点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0) ( x 1 , y 1 ) (x_1, y_1) (x1,y1), 过两点作曲线 y = f ( x ) y=f(x) y=f(x), 满足 f ( x 0 ) = y 0 f(x_0)=y_0 f(x0)=y0 f ( x 1 ) = y 1 f(x_1)=y_1 f(x1)=y1.
考虑定积分定义的泛函 I ( f ) = ∫ x 0 x 1 F ( x , y , y ′ ) d x I(f) = \int_{x_0}^{x_1}F(x,y,y')\text dx I(f)=x0x1F(x,y,y)dx 希望求得一个 y y y 使得 I I I 取极值.

给函数 F F F 做变分, 得到 δ F = ∂ F ∂ y δ y + ∂ F ∂ y ′ δ y ′ \delta F = \frac{\partial F}{\partial y}\delta y + \frac{\partial F}{\partial y'}\delta y' δF=yFδy+yFδy

其中变分 δ y \delta y δy 满足 δ y ∣ x = x 0 = 0 \left.\delta y\right|_{x=x_0}=0 δyx=x0=0 δ y ∣ x = x 1 = 0 \left.\delta y\right|_{x=x_1}=0 δyx=x1=0.
在这里插入图片描述

在这里插入图片描述

I I I 亦发生微小变化
δ I = δ ∫ x 0 x 1 F d x = ∫ x 0 x 1 ( ∂ F ∂ y δ y + ∂ F ∂ y ′ δ y ′ ) d x \delta I = \delta\int_{x_0}^{x_1}F\text dx = \int_{x_0}^{x_1}\left( \frac{\partial F}{\partial y}\delta y + \frac{\partial F}{\partial y'}\delta y' \right)\text dx δI=δx0x1Fdx=x0x1(yFδy+yFδy)dx

继而
δ I = ∫ x 0 x 1 ∂ F ∂ y δ y d x + ∫ x 0 x 1 ∂ F ∂ y ′ δ d y d x d x = ∫ x 0 x 1 ∂ F ∂ y δ y d x + ∫ x 0 x 1 ∂ F ∂ y ′ d ( δ y ) d x d x = ∫ x 0 x 1 ∂ F ∂ y δ y d x + ∫ x 0 x 1 ∂ F ∂ y ′ d ( δ y ) = ∫ x 0 x 1 ∂ F ∂ y δ y d x + ∂ F ∂ y ′ δ y ∣ x 0 x 0 − ∫ x 0 x 1 δ y d ∂ F ∂ y ′ = ∫ x 0 x 1 ∂ F ∂ y δ y d x − ∫ x 0 x 1 δ y d d x ( ∂ F ∂ y ′ ) d x = ∫ x 0 x 1 [ ∂ F ∂ y − d d x ( ∂ F ∂ y ′ ) ] δ y d x \begin{aligned}{} \delta I =& \int_{x_0}^{x_1} \frac{\partial F}{\partial y}\delta y\text dx + \int_{x_0}^{x_1}\frac{\partial F}{\partial y'}\delta \frac{\text dy}{\text dx} \text dx \\ =& \int_{x_0}^{x_1} \frac{\partial F}{\partial y}\delta y\text dx + \int_{x_0}^{x_1}\frac{\partial F}{\partial y'}\frac{\text d(\delta y)}{\text dx} \text dx \\ =& \int_{x_0}^{x_1} \frac{\partial F}{\partial y}\delta y\text dx + \int_{x_0}^{x_1}\frac{\partial F}{\partial y'}\text d(\delta y) \\ =& \int_{x_0}^{x_1} \frac{\partial F}{\partial y}\delta y\text dx + \left.\frac{\partial F}{\partial y'}\delta y\right|_{x_0}^{x_0} - \int_{x_0}^{x_1}\delta y\text d\frac{\partial F}{\partial y'} \\ =& \int_{x_0}^{x_1} \frac{\partial F}{\partial y}\delta y\text dx - \int_{x_0}^{x_1}\delta y\frac{\text d}{\text dx}\left(\frac{\partial F}{\partial y'}\right)\text dx \\ =& \int_{x_0}^{x_1} \left[\frac{\partial F}{\partial y}-\frac{\text d}{\text dx}\left(\frac{\partial F}{\partial y'}\right) \right]\delta y\text dx \\ \end{aligned} δI======x0x1yFδydx+x0x1yFδdxdydxx0x1yFδydx+x0x1yFdxd(δy)dxx0x1yFδydx+x0x1yFd(δy)x0x1yFδydx+yFδyx0x0x0x1δydyFx0x1yFδydxx0x1δydxd(yF)dxx0x1[yFdxd(yF)]δydx

I I I 取极值时, 对任意微小变化 δ y \delta y δy 均有 δ I = 0 \delta I=0 δI=0, 则要求
∂ F ∂ y − d d x ( ∂ F ∂ y ′ ) = 0 \frac{\partial F}{\partial y}-\frac{\text d}{\text dx}\left(\frac{\partial F}{\partial y'}\right) = 0 yFdxd(yF)=0

此即欧拉-拉格朗日方程, 简称E-L方程. 亦可将导数展开, 得到
∂ F ∂ y − ∂ 2 F ∂ y ′ ∂ x − y ′ ∂ 2 F ∂ y ′ 2 − y ′ ′ ∂ 2 F ∂ y ′ ∂ y ′ ′ = 0 \frac{\partial F}{\partial y}-\frac{\partial^2 F}{\partial y'\partial x}-y'\frac{\partial^2 F}{\partial y'^2}-y''\frac{\partial^2 F}{\partial y'\partial y''} = 0 yFyx2Fyy22Fyyy2F=0

一般地, 高阶函数的E-L方程为
∂ F ∂ y − d d x ( ∂ F ∂ y ′ ) + d 2 d x 2 ( ∂ F ∂ y ′ ′ ) − ⋯ = ∑ i = 0 n ( − 1 ) i d i d x i ( ∂ F ∂ y ( i ) ) = 0 \frac{\partial F}{\partial y}- \frac{\text d}{\text dx}\left(\frac{\partial F}{\partial y'}\right)+ \frac{\text d^2}{\text dx^2}\left(\frac{\partial F}{\partial y''}\right)-\cdots= \sum_{i=0}^{n}(-1)^i\frac{\text d^i}{\text dx^i}\left(\frac{\partial F}{\partial y^{(i)}}\right)=0 yFdxd(yF)+dx2d2(yF)=i=0n(1)idxidi(y(i)F)=0

在前述的推导中的分部积分中, 可以看到高阶E-L方程中正负交替的显然性.

由此定义变分导数为 δ F δ y = ∂ F ∂ y − d d x ( ∂ F ∂ y ′ ) + d 2 d x 2 ( ∂ F ∂ y ′ ′ ) − ⋯ = ∑ i = 0 n ( − 1 ) i d i d x i ( ∂ F ∂ y ( i ) ) \frac{\delta F}{\delta y} = \frac{\partial F}{\partial y}- \frac{\text d}{\text dx}\left(\frac{\partial F}{\partial y'}\right)+ \frac{\text d^2}{\text dx^2}\left(\frac{\partial F}{\partial y''}\right)-\cdots= \sum_{i=0}^{n}(-1)^i\frac{\text d^i}{\text dx^i}\left(\frac{\partial F}{\partial y^{(i)}}\right) δyδF=yFdxd(yF)+dx2d2(yF)=i=0n(1)idxidi(y(i)F)

E-L方程重写为 δ F δ y = 0 \frac{\delta F}{\delta y}=0 δyδF=0

进一步地,

应用

两点间最短路径

( x 0 , y 0 ) (x_0, y_0) (x0,y0) ( x 1 , y 1 ) (x_1, y_1) (x1,y1) 作曲线 y = f ( x ) y=f(x) y=f(x), 则曲线长
I ( y ) = ∫ x 0 x 1 d x 2 + d y 2 = ∫ x 0 x 1 1 + y ′ 2 d x I(y) = \int_{x_0}^{x_1}\sqrt{\text dx^2+\text dy^2} = \int_{x_0}^{x_1}\sqrt{1+y'^2}\text dx I(y)=x0x1dx2+dy2 =x0x11+y2 dx

F ( x , y , y ′ ) = 1 + y ′ 2 F(x,y,y')=\sqrt{1+y'^2} F(x,y,y)=1+y2 , 则 ∂ F ∂ y = 0 \dfrac{\partial F}{\partial y}=0 yF=0, ∂ F ∂ y ′ = y ′ 1 + y ′ 2 \dfrac{\partial F}{\partial y'}=\dfrac{y'}{\sqrt{1+y'^2}} yF=1+y2 y, 代入E-L方程, 得到
d d x y ′ 1 + y ′ 2 = 0 y ′ 1 + y ′ 2 = C y ′ = C 1 + y ′ 2 y ′ = ± C 2 1 − C 2 = k d y d x = k y = k x + b \begin{aligned} \frac{\text d}{\text dx}\frac{y'}{\sqrt{1+y'^2}} &= 0 \\ \frac{y'}{\sqrt{1+y'^2}}&=C \\ y'&=C\sqrt{1+y'^2} \\ y'&=\pm\sqrt{\frac{C^2}{1-C^2}}=k \\ \frac{\text dy}{\text dx} &=k \\ y &= kx+b \end{aligned} dxd1+y2 y1+y2 yyydxdyy=0=C=C1+y2 =±1C2C2 =k=k=kx+b

其中 k k k, b b b 均为任意常数. ( x 0 , y 0 ) (x_0, y_0) (x0,y0) ( x 1 , y 1 ) (x_1, y_1) (x1,y1) 代入方程得到
x 1 − x x 1 − x 0 = y 1 − y y 1 − y 0 \frac{x_1-x}{x_1-x_0}=\frac{y_1-y}{y_1-y_0} x1x0x1x=y1y0y1y
在这里插入图片描述

最速降线

过点 A = ( x 0 , y 0 ) A=(x_0, y_0) A=(x0,y0) 和点 B = ( x 1 , y 1 ) B=(x_1, y_1) B=(x1,y1) 作光滑的曲线 y = f ( x ) y=f(x) y=f(x), 其中 y 0 > y 1 y_0>y_1 y0>y1, 则质量为 m m m 的质点从 A A A 静止出发做机械运动到 B B B 的用时的积分推导如下
质点在 ( x , y ) (x,y) (x,y) 处时下落 y 0 − y > 0 y_0-y>0 y0y>0, 重力势能转为动能, 速度 v v v 满足
1 2 m v 2 = m g ( y 0 − y ) v = 2 g ( y 0 − y ) \begin{aligned} \frac 12mv^2&=mg(y_0-y) \\ v&=\sqrt{2g(y_0-y)} \end{aligned} 21mv2v=mg(y0y)=2g(y0y)

同时速度等于路程对时间的导数, 满足 v = d s d t = 1 + y ′ 2 d x d t v=\frac{\text ds}{\text dt}=\sqrt{1+y'^2}\frac{\text dx}{\text dt} v=dtds=1+y2 dtdx

联立上述两式, 消去 v v v, 得到
2 g ( y 0 − y ) = 1 + y ′ 2 d x d t d t = 1 + y ′ 2 2 g ( y 0 − y ) d x \begin{aligned} \sqrt{2g(y_0-y)}&=\sqrt{1+y'^2}\frac{\text dx}{\text dt} \\ \text dt&=\sqrt{\frac{1+y'^2}{2g(y_0-y)}}\text dx \end{aligned} 2g(y0y) dt=1+y2 dtdx=2g(y0y)1+y2 dx

用时积分如下
T ( y ) = ∫ x 0 x 1 d t = ∫ x 0 x 1 1 + y ′ 2 2 g ( y 0 − y ) d x = 1 2 g ∫ x 0 x 1 1 + y ′ 2 y 0 − y d x T(y) = \int_{x_0}^{x_1}\text dt=\int_{x_0}^{x_1}\sqrt{\frac{1+y'^2}{2g(y_0-y)}}\text dx=\frac 1{\sqrt{2g}}\int_{x_0}^{x_1}\sqrt{\frac{1+y'^2}{y_0-y}}\text dx T(y)=x0x1dt=x0x12g(y0y)1+y2 dx=2g 1x0x1y0y1+y2 dx

F ( x , y , y ′ ) = 1 + y ′ 2 y 0 − y F(x,y,y')=\sqrt{\dfrac{1+y'^2}{y_0-y}} F(x,y,y)=y0y1+y2 , 注意到与 x x x 无关的泛函 G ( y , y ′ ) G(y,y') G(y,y)
d d x ( G − y ′ ∂ G ∂ y ′ ) = y ′ ∂ G ∂ y + y ′ ′ ∂ G ∂ y ′ − y ′ ′ ∂ G ∂ y ′ − y ′ d d x ∂ G ∂ y ′ = y ′ δ G δ y \frac{\text d}{\text dx}\left(G-y'\frac{\partial G}{\partial y'}\right) = y'\frac{\partial G}{\partial y}+y''\frac{\partial G}{\partial y'} - y''\frac{\partial G}{\partial y'}-y'\frac{\text d}{\text dx}\frac{\partial G}{\partial y'} = y'\frac{\delta G}{\delta y} dxd(GyyG)=yyG+yyGyyGydxdyG=yδyδG

则E-L方程化为
δ F δ y = 0 = y ′ δ F δ y = d d x ( F − y ′ ∂ F ∂ y ′ ) \frac{\delta F}{\delta y} = 0 = y'\frac{\delta F}{\delta y} = \frac{\text d}{\text dx}\left(F-y'\frac{\partial F}{\partial y'}\right) δyδF=0=yδyδF=dxd(FyyF)

F − y ′ ∂ F ∂ y ′ = 1 + y ′ 2 y 0 − y − y ′ 2 ( y 0 − y ) ( 1 + y ′ 2 ) = C 0 F-y'\frac{\partial F}{\partial y'} = \sqrt{\dfrac{1+y'^2}{y_0-y}}-\dfrac{y'^2}{\sqrt{(y_0-y)(1+y'^2)}}=C_0 FyyF=y0y1+y2 (y0y)(1+y2) y2=C0

1 + y ′ 2 − y ′ 2 = C 0 ( y 0 − y ) ( 1 + y ′ 2 ) 1+y'^2-y'^2=C_0\sqrt{(y_0-y)(1+y'^2)} 1+y2y2=C0(y0y)(1+y2)

C 1 = ( y 0 − y ) ( 1 + y ′ 2 ) C_1=(y_0-y)(1+y'^2) C1=(y0y)(1+y2)

d y d x = − C 1 y 0 − y − 1 \frac{\text dy}{\text dx}=-\sqrt{\frac{C_1}{y_0-y}-1} dxdy=y0yC11

d x = y 0 − y C 1 − ( y 0 − y ) d ( y 0 − y ) \text dx=\sqrt{\frac{y_0-y}{C_1-(y_0-y)}}\text d(y_0-y) dx=C1(y0y)y0y d(y0y)

做换元 y 0 − y = C 1 sin ⁡ 2 θ 2 = 1 2 C 1 ( 1 − cos ⁡ θ ) y_0-y=C_1\sin^2\dfrac{\theta}{2}=\dfrac 12 C_1(1-\cos \theta) y0y=C1sin22θ=21C1(1cosθ)
d x = C 1 sin ⁡ 2 θ 2 C 1 − C 1 sin ⁡ 2 θ 2 d C 1 sin ⁡ 2 θ 2 d x = sin ⁡ θ 2 cos ⁡ θ 2 ⋅ 2 C 1 sin ⁡ θ 2 cos ⁡ θ 2 d θ 2 d x = 2 C 1 sin ⁡ 2 θ 2 d θ 2 d x = 1 2 C 1 ( 1 − cos ⁡ θ ) d θ x = 1 2 C 1 ( θ − sin ⁡ θ ) + C 2 \begin{aligned} \text dx&=\sqrt{\frac{C_1\sin^2\dfrac{\theta}{2}}{C_1-C_1\sin^2\dfrac{\theta}{2}}}\text dC_1\sin^2\dfrac{\theta}{2} \\ \text dx&=\frac{\sin\dfrac{\theta}{2}}{\cos\dfrac{\theta}{2}}\cdot 2C_1\sin\dfrac{\theta}{2}\cos\frac{\theta}{2}\text d\frac{\theta}{2} \\ \text dx&=2C_1\sin^2\dfrac{\theta}{2}\text d\frac{\theta}{2} \\ \text dx&=\frac 12C_1(1-\cos\theta)\text d\theta \\ x&=\frac 12C_1(\theta-\sin\theta)+C_2 \end{aligned} dxdxdxdxx=C1C1sin22θC1sin22θ dC1sin22θ=cos2θsin2θ2C1sin2θcos2θd2θ=2C1sin22θd2θ=21C1(1cosθ)dθ=21C1(θsinθ)+C2

代入初值, 解得 { x = x 0 + k ( θ − sin ⁡ θ ) y = y 0 − k ( 1 − cos ⁡ θ ) \begin{cases}x=x_0+k(\theta-\sin\theta) \\ y=y_0-k(1-\cos \theta)\end{cases} {x=x0+k(θsinθ)y=y0k(1cosθ) 其中 k k k 使方程组有解
{ x 1 = x 0 + k ( θ 1 − sin ⁡ θ 1 ) y 1 = y 0 − k ( 1 − cos ⁡ θ 1 ) \begin{cases}x_1=x_0+k(\theta_1-\sin\theta_1) \\ y_1=y_0-k(1-\cos \theta_1) \end{cases} {x1=x0+k(θ1sinθ1)y1=y0k(1cosθ1)

在这里插入图片描述
比较解与摆线定义, 容易发现最速降线是摆线.
另外, 最速降线过 B B B 点的切线未必是水平线, 对解求微分得到
{ d x = k ( 1 − cos ⁡ θ ) d θ d y = − k sin ⁡ θ d θ \begin{cases}\text dx=k(1-\cos\theta)\text d\theta \\ \text dy=-k\sin\theta\text d\theta\end{cases} {dx=k(1cosθ)dθdy=ksinθdθ

当过 B B B 点的切线为水平线时, 有
d y ∣ ( x , y ) = ( x 1 , y 1 ) = 0 − k sin ⁡ θ 1 d θ = 0 θ 1 = π \left.\text dy\right|_{(x,y)=(x_1, y_1)}=0\\ -k\sin\theta_1\text d\theta=0 \\ \theta_1=\pi dy(x,y)=(x1,y1)=0ksinθ1dθ=0θ1=π

代入到 k k k 的方程组得到
{ x 1 = x 0 + π k y 1 = y 0 − 2 k \begin{cases}x_1=x_0+\pi k \\ y_1=y_0-2k \end{cases} {x1=x0+πky1=y02k

如此, 当过 B B B 点的最速降线的切线为水平线时, B B B 点恒在以 A A A 为起点, 斜率为 − 2 π -\dfrac{2}{\pi} π2 的直线上.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值