[数学] 线性微分方程中的“线性性“

线性微分方程中的"线性性"

前言

  • 为了减少视觉干扰, 将 ∑ i = 0 n \sum_{i=0}^n i=0n简记为 ∑ i \sum_i i, 意为遍历所有有讨论意义的零和正整数.
  • 用大写字母表示矩阵和向量, 用小写字母表示函数, 变量和常量
  • " τ ^\tau τ"表示矩阵转置
  • 向量默认均指列向量
  • 下文涉及的矩阵均为有限但任意大的

将方程转为向量

选取一个适合的基底 R R R, 可以用向量 Y Y Y表示函数 y = R τ Y y=R^\tau Y y=RτY

将线性变换转为矩阵

导数运算是线性变换, 基于该基底可以构建求导矩阵 D D D, 使得
y ′ = R τ D Y y'=R^\tau DY y=RτDY

对于n阶求导亦有
y ( n ) = R τ D n Y y^{(n)}=R^\tau D^nY y(n)=RτDnY

齐次线性微分方程

现在考虑常系数齐次线性微分方程
∑ i a i y ( i ) = 0 \sum_i a_iy^{(i)}=0 iaiy(i)=0

方程用向量可等价改写为线性方程
∑ i a i R τ D i Y = 0 R τ ( ∑ i a i D i ) Y = 0 ( ∑ i a i D i ) Y = 0 \sum_i a_iR^\tau D^iY=0 \\ R^\tau\left(\sum_i a_iD^i\right)Y=0 \\ \left(\sum_i a_iD^i\right)Y=\bm 0 iaiRτDiY=0Rτ(iaiDi)Y=0(iaiDi)Y=0

其中 ∑ i a i D i \sum_i a_iD^i iaiDi是关于 D D D的多项式 P ( D ) P(D) P(D). 方程化为
P ( D ) Y = 0 P(D)Y=\bm 0 P(D)Y=0

导数运算的特征向量和特征值

设指数函数可表示为 e λ x = R τ E λ e^{\lambda x}=R^\tau E_\lambda eλx=RτEλ ( e λ x ) ′ = λ e λ x \left(e^{\lambda x}\right)'=\lambda e^{\lambda x} (eλx)=λeλx可以发现有 D E λ = λ E λ DE_\lambda=\lambda E_\lambda DEλ=λEλ.
故当 D D D的特征值为 λ \lambda λ时, 对应的特征向量为 E λ E_\lambda Eλ. 随即矩阵 P ( D ) P(D) P(D)的特征值为 P ( λ ) P(\lambda) P(λ).

考虑线性方程 P ( D ) Y = 0 P(D)Y=\bm 0 P(D)Y=0, 由 P ( D ) Y = P ( λ ) Y P(D)Y=P(\lambda)Y P(D)Y=P(λ)Y可知, 方程的解即 P ( λ ) = 0 P(\lambda)=0 P(λ)=0时的 λ \lambda λ对应的特征向量在基底 R R R下的函数, 通解即是各个线性无关特征向量的线性组合对应的函数

常系数齐次线性微分方程

考虑常系数齐次线性微分方程
∑ i f i y ( i ) = 0 \sum_i f_iy^{(i)}=0 ifiy(i)=0
f i = R τ F i f_i=R^\tau F_i fi=RτFi, 方程用向量可等价转写为线性方程
∑ i R τ F i R τ D i Y = 0 \sum_i R^\tau F_i R^\tau D^i Y=0 iRτFiRτDiY=0

该方程暂不可解, 假设 R τ A R τ B = R τ C R^\tau A R^\tau B=R^\tau C RτARτB=RτC, 不可解的原因在于 C C C A A A B B B的关系不确定. 如当基底 R = ( 1 , x , x 2 , x 3 , ⋯   ) τ R=(1, x, x^2, x^3, \cdots)^\tau R=(1,x,x2,x3,)τ时, 有 C = A ∗ B C=A*B C=AB (向量卷积).

但若当 Y 1 Y_1 Y1, Y 2 Y_2 Y2是解时, 线性组合 Y = a Y 1 + b Y 2 Y=aY_1+bY_2 Y=aY1+bY2也是解.

一类常系数线性微分方程的特解

一类常系数线性微分方程看起来会有二项式的特征, 如
y ′ ′ − 2 y ′ + y = e x y''-2y'+y=e^x y′′2y+y=ex 下面将讨论这类方程的解

考虑n阶常系数线性微分方程
R τ ( D − λ I ) n Y = R τ Q R^\tau(D-\lambda I)^nY=R^\tau Q Rτ(DλI)nY=RτQ

的一个特解. 其中自由项为 R τ Q = e λ x ∑ i c i x i R^\tau Q=e^{\lambda x}\sum_i c_ix^i RτQ=eλxicixi, I I I为单位矩阵.

现选取基底 R = ( e λ x , x e λ x , x 2 e λ x , ⋯   ) τ R=\left( e^{\lambda x}, xe^{\lambda x}, x^2 e^{\lambda x}, \cdots \right)^\tau R=(eλx,xeλx,x2eλx,)τ

设特解为 y ∗ = R τ P = x n e λ x ∑ i a i x i y^*=R^\tau P=x^ne^{\lambda x}\sum_i a_i x^i y=RτP=xneλxiaixi 亦即
P = ( 0 , ⋯   , 0 ⏟ n 个 , a 0 , a 1 , ⋯   ) τ P=(\underbrace{0,\cdots,0}_{n\text{个}},a_0, a_1,\cdots)^\tau P=(n 0,,0,a0,a1,)τ

将特解代入, 得到 ( D − λ I ) n P = Q (D-\lambda I)^nP=Q (DλI)nP=Q

其中
D = ( λ 1 0 0 ⋯ 0 λ 2 0 ⋯ 0 0 λ 3 ⋯ 0 0 0 λ ⋯ ⋮ ⋮ ⋮ ⋮ ⋱ ) , D − λ I = ( 0 1 0 0 ⋯ 0 0 2 0 ⋯ 0 0 0 3 ⋯ 0 0 0 0 ⋯ ⋮ ⋮ ⋮ ⋮ ⋱ ) D=\begin{pmatrix} \lambda & 1 & 0 & 0 & \cdots \\ 0 & \lambda & 2 & 0 & \cdots \\ 0 & 0 & \lambda & 3 & \cdots \\ 0 & 0 & 0 & \lambda & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} , D-\lambda I=\begin{pmatrix} 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 2 & 0 & \cdots \\ 0 & 0 & 0 & 3 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} D= λ0001λ0002λ0003λ ,DλI= 0000100002000030

用归纳法可解得 c i = a i ( i + n ) ! i ! c_i=a_i\cfrac{(i+n)!}{i!} ci=aii!(i+n)!

常系数线性微分方程

最后考虑一般形式的常系数线性微分方程
∑ i f i y ( i ) = g \sum_i f_i y^{(i)}=g ifiy(i)=g

选取适当基底 R R R, 使系数, 自由项, 解, 及其各阶导数均在基底张成的线性空间内

f i = R τ F i f_i=R^\tau F_i fi=RτFi, g = R τ B g=R^\tau B g=RτB, y = R τ X y=R^\tau X y=RτX, 有 y ( n ) = R τ D n X y^{(n)}=R^\tau D^n X y(n)=RτDnX. 方程化为
∑ i R τ F i R τ D i X = R τ B \sum_i R^\tau F_iR^\tau D^iX=R^\tau B iRτFiRτDiX=RτB

R τ A R τ B = R τ ( A ⊗ B ) R^\tau AR^\tau B=R^\tau (A\otimes B) RτARτB=Rτ(AB)(即乘法). 设 L ( X ) = A ⊗ X L(X)=A\otimes X L(X)=AX, 为线性变换, 其中 A A A为任意常向量. 因此存在矩阵 M M M, 使 A ⊗ X = M X A\otimes X=MX AX=MX. 由此针对每个 F i F_i Fi, 都存在 M i M_i Mi使 F i ⊗ X = M i X F_i\otimes X=M_iX FiX=MiX成立.

A = ∑ i M i D i A=\sum_i M_iD^i A=iMiDi, 方程化为
R τ ∑ i F i ⊗ ( D i X ) = R τ B ∑ i M i D i X = B A X = B R^\tau \sum_i F_i\otimes \left(D^iX\right)=R^\tau B \\ \sum_i M_iD^iX=B \\ AX=B RτiFi(DiX)=RτBiMiDiX=BAX=B

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值