# -*- coding: cp936 -*-
import cv2.cv as cv
cv.NamedWindow("W1", cv.CV_WINDOW_AUTOSIZE)#这个窗口播放原视频
cv.NamedWindow("W2", cv.CV_WINDOW_AUTOSIZE)#这个只播放检测出人脸的帧
cv.MoveWindow("W1", 10,10);
cv.MoveWindow("W2", 650,10);
#视频路径
filename = "f://BBTS04E01.rmvb"
#获取视频指针
capture = cv.CaptureFromFile(filename)
#检测人脸函数
def repeat():
#每次从摄像头获取一张图片
frame = cv.QueryFrame(capture)
image_size = cv.GetSize(frame)#获取图片的大小
greyscale = cv.CreateImage(image_size, 8, 1)#建立一个相同大小的灰度图像
cv.CvtColor(frame, greyscale, cv.CV_BGR2GRAY)#将获取的彩色图像,转换成灰度图像
storage = cv.CreateMemStorage(0)#创建一个内存空间,人脸检测是要利用,具体作用不清楚
cv.EqualizeHist(greyscale, greyscale)#将灰度图像直方图均衡化,貌似可以使灰度图像信息量减少,加快检测速度
# detect objects
cascade = cv.Load('haarcascade_frontalface_alt2.xml')#加载Intel公司的训练库
#检测图片中的人脸,并返回一个包含了人脸信息的对象faces
faces = cv.HaarDetectObjects(greyscale, cascade, storage, 1.2, 2,
cv.CV_HAAR_DO_CANNY_PRUNING,
(50, 50))
#获得人脸所在位置的数据
for (x,y,w,h),n in faces:
cv.Rectangle(frame,(x,y),(x+w,y+h),(0,0,255),20)#在相应位置标识一个矩形 红色 20宽度
cv.ShowImage("W2", frame)
cv.ShowImage("W1", frame)
#循环检测每一帧的图片知道俺ESC键退出程序
while True:
repeat()
c = cv.WaitKey(24)
if c == 27: break
cv.DestroyAllWindows()
检测视频文件中的人脸,利用了opencv的python接口。分类器采用的是haarcascade_frontalface_alt2.xml,由Intel提供。下载连接:http://download.csdn.net/detail/jkhere/5101935
测试视频是最喜欢的美剧《生活大爆炸》,附两张截图。