线性代数概念小结-面试

一、行列式(表示一个数)

1、余子式 M_{ij}(n-1阶),奇异矩阵D=0

2、按照行/列展开 D=a_{i1}\cdot A_{i1}+a_{i2}\cdot A_{i2}+\cdots +a_{in}\cdot A_{in}\left ( i=1,2,\cdots ,n \right )

3、范德蒙德行列式 D=\begin{vmatrix} 1& 1& \cdots &1 \\ x1& x2& \cdots &x3 \\ x_{1}^{2}& x_{2}^{2}& \cdots &x_{n}^{2} \\ \vdots & \vdots& \ddots &\vdots \\ x_{1}^{n-1}& x_{2}^{n-1}& \cdots &x_{n}^{n-1} \end{vmatrix}= \prod_{1\leqslant i,j\leqslant n}\left ( x_{j}-x_{i} \right )

二、矩阵及其运算

1、\left | AB \right |=\left | A \right |\left | B \right |,矩阵乘积的行列式等于矩阵行列式的乘积

2、A^{^{-1}}=\frac{1}{\left | A \right |}A^{*}AA^{*}=\left | A \right |E

3、克拉默法则:求解线性方程组的唯一解(行列式与解的关系)

D\neq 0\Rightarrow 零解,非零解 \Rightarrow D=0

三、矩阵初等变换与线性方程组

1、秩:最高阶非零子式

2、秩的性质:

max\left \{ R\left ( A \right ),R\left ( B \right ) \right \}\leqslant R\left ( A,B \right )\leqslant R\left ( A \right )+R\left ( B \right )

R\left ( A \right )-R\left ( B \right )\leqslant R\left ( A\pm B \right ) \leqslant R\left ( A \right )+R\left ( B \right )

R\left ( AB \right )\leqslant min\left \{ R\left ( A \right ),R\left ( B \right ) \right \}

if\: A_{m\times n}B_{n\times l}=0, else \: R\left ( A \right )+R\left ( B \right )\leqslant n

3、秩与方程组

R\left ( A \right )< R(A,b),无解

R(A)=R(A,b)=n,唯一解

R(A)=R(A,b)<n,无穷解

四、向量组线性相关性

1、能够线性表示 \Leftrightarrow 方程组有解 \Leftrightarrow 秩为零

2、线性相关

向量组A中至少有一个向量能由其余m-1个线性表示\Leftrightarrow

齐次线性方程组有非零解\Leftrightarrow

R(A)<m个向量

3、最大无关组 

向量最大无关组一般不唯一

4、线性方程组

(1)齐次  基础解系:解集的最大无关组,n元方程组中,包含n-R(A)

(2)非齐次  加特解

5、向量空间 

基--a_{1}\: a_{2}\cdots a_{r}线性无关

维数--r

坐标--基表示前的系数

6、过渡矩阵

(b_{1}\: b_{2}\: b_{3})=(a_{1}\: a_{2} \: a_{3})P

五、相似矩阵及二次型

1、向量:\left \lfloor x,y \right \rfloor=0内积为零表示向量正交

2、施密特变换:普通向量组经过正交化、单位化变为标准正交基

3、正交矩阵:AA^{T}=E\Leftrightarrow A^{T}A=E

4、方阵

Ax=\lambda x

求特征值\lambda\left | \lambda E-A \right |=0的根为\lambda

求特征方程x(\lambda E-A)x=0的非零解

An个特征值互不相等\RightarrowA可对角化\LeftrightarrowAn个线性无关的特征向量

5、相似矩阵  

存在可逆矩阵P,使得P^{-1}AP=B

6、对称矩阵必有n个线性无关特征向量,必存在正交矩阵P,使得P^{-1}AP=P^{T}AP=\Lambda

7、配方法化二次型为标准型

二次型:含有n个变量的二次齐次函数,矩阵表示f=x^{T}AxA为对称矩阵

标准型只含有平方项,规范性系数只在1,-1,0中选择

合同:可逆矩阵C,使得B=C^{T}AC,常用于使对称矩阵A合同对角化

正定二次型

六、线性空间与线性变换

验证线性空间: 加、乘、封闭、八条运算规律

同构:两线性空间元素一一对应,保持线性组合对应

基变换公式(\beta _{1}\: \beta _{2}\cdots \beta _{n})=(\alpha _{n}\: \alpha _{2}\cdots \alpha _{n})P(\beta _{1}\: \beta _{2}\cdots \beta _{n})^{T}=P^{T}\begin{bmatrix} \alpha _{1}\\\alpha _{2} \\\vdots \\\alpha_{n} \end{bmatrix}

线性变换T在基下的矩阵AT(\alpha _{1},\alpha _{2},\cdots \alpha _{n})=(\alpha _{1},\alpha _{2},\cdots \alpha _{n})A

  • 0
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值