线性代数基础概念

本文详细介绍了线性代数的基本概念,包括转置、矩阵乘积、单位矩阵和逆矩阵,以及线性相关、生成子空间的概念。进一步探讨了范数、特殊类型矩阵、特征分解和奇异值分解,同时还涉及了Moore—Penrose伪逆和行列式运算,为理解和应用线性代数提供了坚实的基础。
摘要由CSDN通过智能技术生成

1.转置

张量: 在某些情况下,我们会讨论不止俩维坐标的数组。一般地,一组元素分布在若干维坐标的规则网格中,我们将其称之为张量。使用这种字体A来表示张量“A”,张量A中坐标为(i,j,k)的元素记作

以对角线为轴的镜像,这条从左上角到右下角的对角线称为主对角线。将矩阵A的转置表示为,定义为

2.矩阵的乘积

向量可以被看做是只有一列的矩阵,向量的转置可以被看做一行的矩阵,俩个相同维数的向量x和y的点击可看作是矩阵乘积,即

服从分配率:A(B+C)=AB+AC;
服从结合率:A(BC)=(AB)C;
矩阵乘积的转置有着简单的形式:(这种情况存在于)
需要注意的是:矩阵的乘积不服从交换律,即AB不等于BA(并非总是满足);

俩个向量的点击(dot product)满足交换律:
对于以上的公式,我们可以稍微证明下:(因为标量的转置其实就是本身,因为只是个数字)

3.单位矩阵和逆矩阵

单位矩阵:任意向量和单位矩阵相乘,都不会改变单位向量的结构很简单:所有沿主对角线的元素都是1,而所有其他位置的元素都是0.

矩阵的逆:记作,被定义为如下性质:,n表示n维,对于常见的等式:,其实可以化简为:,则为:
当然上述取决于是否能够找到一个逆矩阵 ,这关系到 是否存在的条件。

4.线性相关和生成子空间

如果存在的话,那么肯定的,对于每一个向量b,恰好存在一个解。
对于一个系统方程而言,对于某些b的值,有可能不存在,或者存在无限多个解。然而,存在多余一个解但是少于无穷解是不可能发生的;毕竟如果x和y都是系统的解,那么z=ax+(1-a)y也是该系统方程的解。

分析方程有多少个解,可以将A的列向量看作是从原点(元素都为0)出发的不同方向,确定有多少种方法可以到达向量b,则向量x中的每个元素表示我们应该沿着这些方向走多远。即 表示我们需要沿着第i个向量的方向走多远;
得到以下公式:

该公式表示x的第i个元素和A的第i列的乘积的和。

上述的操作被称为线性组合,形式上,某个集合中向量的线性组合,是指每个向量乘以对应系数之后的和,即

, 其实ci表示向量,v(i)表示对应的元素。

一组向量的生成空间 是原始向量线性组合所能抵达的点的集合。

确定Ax=b是否有解相当于确定向量b是否在A列向量的生成子空间中,这个子空间被称为A的列空间。
为了让方程Ax=b对于任意的向量都有解,则A的列子空间,即A的线性组合所能到达的点,要覆盖整个R,如果某点不在A的列空间中,那么b就没解了。

如果说b是n维空间的点,那么A的列空间需要覆盖 ,至少是m>n.举个栗子,如果说A是一个3x2的矩阵,如果b是三维的,就算再怎么描述x,则A的列空间也只有2&

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值