秩 的概述——线代面试必问1

在线性代数(linear algebra)中,矩阵 A A A 的秩是由它的列向量生成(张成)的列空间的维度。这对应 A A A 中线性无关(linearly independent)的列的极大数目。这也和它的行向量张成的行空间的维度相等。因此,秩是由 A A A 表示的线性方程组和线性变换的“非退化性”(nondegenerateness)的度量。秩有多个等价定义。矩阵的秩是它最基本(fundamental)的特征之一。

从行阶梯形得到秩

求矩阵秩的一种常用方法是通过初等行变换(elementary row operations)将其简化为更简单的形式,通常是行阶梯形(row echelon form)。行变换不改变行空间(因此不改变行秩),并且,由于是可逆的,映射列空间到同构(isomorphic)空间(因此不改变列秩)。一旦变成行最简形,行秩和列秩显然是相同的,等于主元(pivot)数和非零行数。主元是指每一行第一个非零元素。

例如,矩阵
A = [ 1 2 1 − 2 − 3 1 3 5 0 ] A=\begin{bmatrix}1&2&1\\-2&-3&1\\3&5&0\end{bmatrix} A= 123235110
可以通过以下初等行运算将其化为行最简形:

[ 1 2 1 − 2 − 3 1 3 5 0 ] → 2 R 1 + R 2 → R 2 [ 1 2 1 0 1 3 3 5 0 ] → − 3 R 1 + R 3 → R 3 [ 1 2 1 0 1 3 0 − 1 − 3 ] → R 2 + R 3 → R 3    [ 1 2 1 0 1 3 0 0 0 ] → − 2 R 2 + R 1 → R 1 [ 1 0 − 5 0 1 3 0 0 0 ]   . \begin{aligned} \begin{bmatrix}1&2&1\\-2&-3&1\\3&5&0\end{bmatrix} &\xrightarrow{2R_1 + R_2 \to R_2} \begin{bmatrix}1&2&1\\0&1&3\\3&5&0\end{bmatrix} \xrightarrow{-3R_1 + R_3 \to R_3} \begin{bmatrix}1&2&1\\0&1&3\\0&-1&-3\end{bmatrix} \\ &\xrightarrow{R_2 + R_3 \to R_3} \,\, \begin{bmatrix}1&2&1\\0&1&3\\0&0&0\end{bmatrix} \xrightarrow{-2R_2 + R_1 \to R_1} \begin{bmatrix}1&0&-5\\0&1&3\\0&0&0\end{bmatrix}~. \end{aligned} 123235110 2R1+R2R2 103215130 3R1+R3R3 100211133 R2+R3R3 100210130 2R2+R1R1 100010530  .

最终的矩阵(行最简形)有两个非零行,因此矩阵 A A A 的秩是2。

列秩=行秩的证明(任意形状的矩阵都成立,不一定是方阵)

可以很直观地表明,行秩和列秩都不会被初等行变换改变。当高斯消元(Gaussian elimination)通过初等行变换进行时,矩阵的行最简形具有与原始矩阵相同的行秩和列秩。进一步的,初等变换将矩阵变为含有单位矩阵(identity matrix)的形式(相抵标准形),可能含0元素的行和列边界。同样,这既不会改变行秩,也不会改变列秩。由此得到的矩阵的行和列的秩是其非零元素的数目,注意单位矩阵非零元素只在其主对角线上,非零元素个数等于其阶数。下述矩阵为相抵标准形。其中, I r \bold{I}_r Ir为单位矩阵。
[ I r 0 ⃗ 0 ⃗ 0 ⃗ ] \begin{bmatrix}\bold{I}_r&\vec{0}\\ \vec{0}&\vec{0}\end{bmatrix} [Ir0 0 0 ]

使用线性组合证明

A A A 是一个 m × n m\times n m×n 的矩阵。
A = [ a 1 , a 2 , a 3 , … , a n ] 1 × n A = [\bold{a}_1, \bold{a}_2, \bold{a}_3, \dots,\bold{a}_n]_{1\times n} A=[a1,a2,a3,,an]1×n
注意,上述矩阵 A A A 以列分块矩阵表示。 a i a_i ai表示 矩阵 A A A 的第 i i i 个列向量。

令其列秩 r r r ,而且令 c 1 , … , c r \bold{c}_1,\dots,\bold{c}_r c1,,cr A A A 列空间的任意一个。将这个基排列成一个 m × r m\times r m×r 的矩阵 C C C A A A 的每一列都可以被表示成 C C C r r r 个列向量的线性组合(linear combination)。
a 1 = k 11 c 1 + k 12 c 2 + k 13 c 3 + ⋯ + k 1 r c r a 2 = k 21 c 1 + k 22 c 2 + k 23 c 3 + ⋯ + k 2 r c r ⋮ a n = k n 1 c 1 + k n 2 c 2 + k n 3 c 3 + ⋯ + k n r c r \bold{a}_1 =k_{11}\bold{c}_1+k_{12}\bold{c}_2+k_{13}\bold{c}_3+\dots+k_{1r}\bold{c}_r \\ \bold{a}_2 =k_{21}\bold{c}_1+k_{22}\bold{c}_2+k_{23}\bold{c}_3+\dots+k_{2r}\bold{c}_r\\ \vdots\\ \bold{a}_n =k_{n1}\bold{c}_1+k_{n2}\bold{c}_2+k_{n3}\bold{c}_3+\dots+k_{nr}\bold{c}_r a1=k11c1+k12c2+k13c3++k1rcra2=k21c1+k22c2+k23c3++k2rcran=kn1c1+kn2c2+kn3c3++knrcr
这意味着存在一个 r × n r\times n r×n 的矩阵 R R R ,满足 A = C R A=CR A=CR R R R 中的每一列是基的线性组合的系数。
[ a 1 , a 2 , a 3 , … , a n ] 1 × n = [ c 1 , … , c r ] 1 × r × R [\bold{a}_1, \bold{a}_2, \bold{a}_3, \dots,\bold{a}_n]_{1\times n}=[\bold{c}_1,\dots,\bold{c}_r]_{1\times r}\times R [a1,a2,a3,,an]1×n=[c1,,cr]1×r×R

R = [ k 11 k 21 ⋯ k n 1 k 12 k 22 ⋯ k n 2 ⋮ k 1 r k 2 r ⋯ k n r ] r × n R =\begin{bmatrix}k_{11}&k_{21}&\cdots&k_{n1}\\k_{12}&k_{22}&\cdots&k_{n2}\\ \vdots\\k_{1r}&k_{2r}&\cdots&k_{nr}\end{bmatrix}_{r\times n} R= k11k12k1rk21k22k2rkn1kn2knr r×n

现在重写 R R R,将其行分块。得:
R = [ r 1 r 2 ⋮ r r ] r × 1 R =\begin{bmatrix}\bold{r}_{1}\\\bold{r}_{2}\\\vdots\\ \bold{r}_{r}\end{bmatrix}_{r\times 1} R= r1r2rr r×1
重写 A A A, 将其行分块,得:
A = [ a 1 a 2 ⋮ a m ] m × 1 A =\begin{bmatrix}{\bold{a}}_{1}\\{\bold{a}}_{2}\\\vdots\\ {\bold{a}}_{m}\end{bmatrix}_{m\times 1} A= a1a2am m×1
C C C 写成
C = [ c 11 c 12 ⋯ c 1 r c 21 c 22 ⋯ c 2 r ⋮ c m 1 c m 2 ⋯ c m r ] m × r C =\begin{bmatrix}c_{11}&c_{12}&\cdots&c_{1r}\\c_{21}&c_{22}&\cdots&c_{2r}\\ \vdots\\c_{m1}&c_{m2}&\cdots&c_{mr}\end{bmatrix}_{m\times r} C= c11c21cm1c12c22cm2c1rc2rcmr m×r
A = [ a 1 a 2 ⋮ a m ] m × 1 = [ c 11 c 12 ⋯ c 1 r c 21 c 22 ⋯ c 2 r ⋮ c m 1 c m 2 ⋯ c m r ] m × r × [ r 1 r 2 ⋮ r r ] r × 1 A =\begin{bmatrix}{\bold{a}}_{1}\\{\bold{a}}_{2}\\\vdots\\ {\bold{a}}_{m}\end{bmatrix}_{m\times 1} =\begin{bmatrix}c_{11}&c_{12}&\cdots&c_{1r}\\c_{21}&c_{22}&\cdots&c_{2r}\\ \vdots\\c_{m1}&c_{m2}&\cdots&c_{mr}\end{bmatrix}_{m\times r}\times\begin{bmatrix}\bold{r}_{1}\\\bold{r}_{2}\\\vdots\\ \bold{r}_{r}\end{bmatrix}_{r\times 1} A= a1a2am m×1= c11c21cm1c12c22cm2c1rc2rcmr m×r× r1r2rr r×1

现在,A的每一行都由 R R R r r r 行 线性组合给出。因此, R R R 的行向量是 A A A 的行空间的一个基,而且由于Steinitz exchange 引理(在附录有详细说明), A A A 的行秩不能超过 r r r 。这个证明了 A A A的行秩小于等于列秩。由于上面推导过程可以适用于任何矩阵,所以把它应用在矩阵 A A A 的转置上。由于 A T A^{T} AT行秩是 A A A 的列秩,同时 A T A^{T} AT 的列秩是 A A A 的行秩。所以得到 A A A 的列秩小于等于行秩。所以 A A A 的行秩等于列秩。

注:利用分块矩阵证明时,一般是
矩阵 A 列分块 = 矩阵 B 列分块 × 矩阵 C 的非分块形式 矩阵A列分块 = 矩阵B列分块\times 矩阵C的非分块形式 矩阵A列分块=矩阵B列分块×矩阵C的非分块形式

矩阵 A 行分块 = B 非分块形式 × 矩阵 C 的行分块形式 矩阵A行分块 = B非分块形式\times 矩阵C的行分块形式 矩阵A行分块=B非分块形式×矩阵C的行分块形式

还有
A x Ax Ax
表示的矩阵 A A A 列空间中的某个向量。因为将矩阵 A A A 按列分块,向量 x x x 中的元素作为线性组合的标量系数,那么整个 A x Ax Ax 就是矩阵 A A A 列向量的线性组合。

使用正交性证明

A A A 是一个 m × n m\times n m×n 的矩阵,矩阵的行秩 r r r, 矩阵元素属于实数域。因此,矩阵 A A A 行空间的维度是 r r r 。令
x 1 , x 2 , … , x r \bold{x}_1,\bold{x}_2,\dots,\bold{x}_r x1,x2,,xr
A A A行空间的一个

x i , i = 1 , 2 , … r \bold{x}_i,\quad i=1,2,\dots r xi,i=1,2,r n ∗ 1 n*1 n1的向量 (转置了)。
A x 1 , A x 2 , … , A x r A\bold{x}_1,A\bold{x}_2,\dots,A\bold{x}_r Ax1,Ax2,,Axr
线性无关的。为什么?考虑下列齐次线性关系,其中 c 1 , c 2 , … , c r c_1,c_2,\dots,c_r c1,c2,,cr标量系数
0 ⃗ = c 1 A x 1 + c 2 A x 2 + , ⋯ + c r A x r = A ( c 1 x 1 + c 2 x 2 + ⋯ + c r x r ) = A v , \vec{0} = c_{1}A\bold{x}_1+c_{2}A\bold{x}_2+,\dots+c_{r}A\bold{x}_r=A(c_{1}\bold{x}_1+c_{2}\bold{x}_2+\dots+c_{r}\bold{x}_r)=A\bold{v}, 0 =c1Ax1+c2Ax2+,+crAxr=A(c1x1+c2x2++crxr)=Av,
其中 v = c 1 x 1 + c 2 x 2 + ⋯ + c r x r \bold{v}=c_{1}\bold{x}_1+c_{2}\bold{x}_2+\dots+c_{r}\bold{x}_r v=c1x1+c2x2++crxr不难观察出

  1. v \bold{v} v A A A 的行空间中的向量的线性组合,这意味着 v \bold{v} v 属于行空间
  2. 因为 A v = 0 ⃗ A\bold{v} = \vec{0} Av=0 ,所以向量 v v v A A A每一个行向量 正交(orthogonal)(将矩阵 A A A 行分块),因此和 A A A行空间中每一个向量正交

上述事实1和2推导出 向量 v \bold{v} v 和它自己正交。这证明了 v = 0 ⃗ \bold{v} = \vec{0} v=0 ,或者根据 v \bold{v} v 的定义:
c 1 x 1 + c 2 x 2 + ⋯ + c r x r = 0 ⃗ c_{1}\bold{x}_1+c_{2}\bold{x}_2+\dots+c_{r}\bold{x}_r = \vec{0} c1x1+c2x2++crxr=0
由于 { x 1 , x 2 , … , x r } \{\bold{x}_1,\bold{x}_2,\dots,\bold{x}_r\} {x1,x2,,xr} A A A 的行空间的一个基,所以是线性无关的。这推导出 c 1 = c 2 = ⋯ = c r = 0 c_1 = c_2=\dots=c_r=0 c1=c2==cr=0 。故 A x 1 , A x 2 , … , A x r A\bold{x}_1,A\bold{x}_2,\dots,A\bold{x}_r Ax1,Ax2,,Axr 是线性无关的。

现在,
A = [ a 1 a 2 ⋮ a m ] m × 1 x i = [ x i 1 x i 2 ⋮ x n ] n × 1 A =\begin{bmatrix}{\bold{a}}_{1}\\{\bold{a}}_{2}\\\vdots\\ {\bold{a}}_{m}\end{bmatrix}_{m\times 1} \bold{x_i} =\begin{bmatrix}{{x}_{i}}_{1}\\{x}_{i2}\\\vdots\\ {x}_{n}\end{bmatrix}_{n\times 1} A= a1a2am m×1xi= xi1xi2xn n×1

每一个 A x i A\bold{x}_i Axi 显然是 A A A 列空间的一个向量(矩阵 A A A 按行分块,向量 x i \bold{x}_i xi 每个元素作为线性组合的标量系数)。 故, A x 1 , A x 2 , … , A x r A\bold{x}_1,A\bold{x}_2,\dots,A\bold{x}_r Ax1,Ax2,,Axr A A A 的列空间 中 r r r 个线性无关的向量,而且 A A A 的列空间的维度大于等于 r r r (这是显然的,因为列空间已经存在 r r r 个线性无关的向量,至少有 r r r 个,有没有更多的线性无关向量不知道,但是有这个可能性)。这证明了 A A A 的行秩小于等于列秩。现在对 A T A^T AT 同样进行类似推导,即可得到 A A A 的列秩小于等于行秩的结论。即证明得到 A A A 的行秩等于列秩。

替代定义

在这个版块中,矩阵 A A A 都是 m × n m \times n m×n 的矩阵,在任意数域 F F F 上。

像的维度

给定矩阵 A A A ,其对应的线性映射 (linear mapping)
f : F n ↦ F m f:F^{n} \mapsto F^{m} f:FnFm

f ( x ) = A x f(x) = Ax f(x)=Ax
定义

A A A 的秩是 f f f 的像的维度。这个定义的优点在于适用于任何线性映射,而不是某个特定的矩阵。

考虑零度(nullity)的秩

给定和上面一样的线性映射 f f f ,它的秩是
n − d i m ( k e r e l ( f ) ) n-dim(kerel(f)) ndim(kerel(f))
n n n 减去 f f f 的核的维度。秩-零化度定理(rank-nullity theorem)博主之前的这篇博客有证明)表明这个定义和前面的定义是等价的。

列秩-列空间的维度

A A A 的秩是 A A A 的列向量中的极大无关组的向量的个数。这是 A A A 列空间的维度。(列空间是 F m F^{m} Fm 的子空间,由 A A A 的列向量生成,事实上这就是与 A A A 相关的线性映射 f f f

行秩-行空间的维度

A A A 的秩是 A A A 的行向量中的极大无关组的向量的个数。这是 A A A 行空间的维度。

分解秩(Decomposition rank)

A A A 的秩是最小的整数 k k k s . t . s.t. s.t. A A A 可以被分解为 A = C R A=CR A=CR ,其中 C C C 是一个 m × k m\times k m×k 的矩阵, R R R 是一个 k × n k\times n k×n 的矩阵,下列叙述等价:

  1. A A A 的列秩小于等于 k k k
  2. 存在 k k k 个大小为 m m m 的列向量 c 1 , c 2 , … , c k \bold{c}_1,\bold{c}_2,\dots,\bold{c}_k c1,c2,ck s.t. A A A 的每一列都能表示成它们的线性组合,
  3. 存在一个 m × k m\times k m×k 的矩阵 C C C 和一个 k × n k\times n k×n 的矩阵 R R R 满足 A = C R A=CR A=CR (当 k k k 是秩,此时是 A A A 的一个秩分解),
  4. 存在 k k k 个大小为 m m m 的列向量 r 1 , r 2 , … , r k \bold{r}_1,\bold{r}_2,\dots,\bold{r}_k r1,r2,rk s.t. A A A 的每一行都能表示成它们的线性组合,
  5. A A A 的行秩小于等于 k k k

事实上,上述5个结论等价是很显然的。比如,证明从2中能推出3,令矩阵 C C C 的列向量是2中的 c 1 , c 2 , … , c k \bold{c}_1,\bold{c}_2,\dots,\bold{c}_k c1,c2,ck 。证明从3能推出2,取3中的矩阵 C C C 的列向量作为 c 1 , c 2 , … , c k \bold{c}_1,\bold{c}_2,\dots,\bold{c}_k c1,c2,ck 即可。

考虑奇异值的秩

A A A 的秩等于非零奇异值的数目,这和奇异值分解
A = U Σ V T A =U\Sigma V^{T} A=UΣVT
Σ \Sigma Σ 中非零对角元素的个数相等。

与行列式有关的秩(Determinantal rank)

A A A 的秩是 A A A 中任意非零余子式(non-zero minor)中拥有最高阶(order)的余子式的阶。

和分解秩一样,这种定义并没有给出一个计算秩的高效方法,但是它在理论上是有用的:针对矩阵的秩,一个非零余子式提供了一个下界(它的阶)。对于证明某些操作不会降低矩阵的秩,它是有效的。

命题:若矩阵 A A A中有一个 k k k 阶子式不等于 0,则 r a n k ( A ) ≥ k rank( A) ≥k rank(A)k; 若 A A A 的所有 l l l 阶子式都等于 0 0 0,则 r a n k ( A ) < l rank( A) < l rank(A)l

引理:将矩阵 A A A 划去若干行得到矩阵 B B B,则 r a n k ( B ) ≤ r a n k ( A ) rank( B) ≤rank( A) rank(B)rank(A)

证明:如果 A A A 中有一个 k k k 阶子式不等于零,则将这个子式所在的行对调到前$ k$ 行,并对这 k k k 行进行初等 行变换,可以变成一个阶梯型子块,该子块中不可能有一行全部为零,否则与原 k k k 阶子式不等于 0 矛盾,则根据引理, R ( A ) ≥ k R( A) ≥k R(A)k; 若 A A A 的所有 l l l 阶子式都等于 0 0 0,则将 A A A 等价变成阶梯型后非零行的个数不可能大于或等于 l l l,否则 A A A 中应至少有一个 l l l 阶子式不为零,所以 R ( A ) < l R( A) < l R(A)l

评注:如果一个矩阵的行列式不为0,那么经过有限次初等行变换,矩阵不可能出现全零行,否则它的行列式为0。上面的证明要结合子块整个大矩阵两个层次去看。

性质

我们假设 A A A 是一个 m × n m\times n m×n 的矩阵,而且我们定义线性映射 f f f ,通过 f ( x ) = A x f(\bold{x})=A\bold{x} f(x)=Ax

  • 一个 m × n m \times n m×n 矩阵的秩是非负整数,而且不能大于 m m m 或者 n n n 。即:

    r a n k ( A ) ≤ m i n ( m , n ) rank(A) \le min(m,n) rank(A)min(m,n)

    一个矩阵的秩如果为 m i n ( m , n ) min(m,n) min(m,n) ,则它是满秩的(full rank),否则是秩亏(rank deficient)。

  • 只有零矩阵(所有元素都是0,zero matrix)的秩才是0。

  • f f f单射(或“一对一”,injective)当且仅当 A A A 有秩 n n n (在这种情况下,我们说 A A A满列秩)。

  • f f f满射(surjective)当且仅当 A A A 有秩 m m m (在这种情况下,我们说A有满行秩)。

  • 如果 A A A 是一个方阵(即 m = n m = n m=n),则 A A A 是可逆的当且仅当 A A A 的秩为 n n n(即 A A A的秩满)。

  • 如果 B B B 是任意的 n × k n\times k n×k 矩阵,则
    r a n k ( A B ) ≤ m i n ( r a n k ( A ) , r a n k ( B ) ) rank(AB)\le min(rank(A),rank(B)) rank(AB)min(rank(A),rank(B))

  • 如果 B B B 是任意的 n × k n\times k n×k 矩阵,秩为 n n n
    r a n k ( A B ) = r a n k ( A ) rank(AB) = rank(A) rank(AB)=rank(A)

  • 如果 C C C 是一个 l × m l\times m l×m 的矩阵,秩为 m m m ,则
    r a n k ( C A ) = r a n k ( A ) rank(CA)=rank(A) rank(CA)=rank(A)

  • A A A 的秩为 r r r 当且仅当 存在一个可逆的 m ∗ m m*m mm 矩阵 X X X 和一个可逆的 n × n n\times n n×n 的矩阵 Y Y Y 满足
    X A Y = [ I r 0 ⃗ 0 ⃗ 0 ⃗ ] XAY =\begin{bmatrix}\bold{I}_r&\vec{0}\\ \vec{0}&\vec{0}\end{bmatrix} XAY=[Ir0 0 0 ]
    其中, I r \bold{I}_{r} Ir 表示一个 r × r r\times r r×r 的单位阵。

  • Sylverster的 秩不等式,矩阵 B B B n × k n\times k n×k 的矩阵,则
    r a n k ( A ) + r a n k ( B ) − n ≤ r a n k ( A B ) rank(A)+rank(B)-n\le rank(AB) rank(A)+rank(B)nrank(AB)
    这个不等式是下个不等式的一个特例

  • Frobenius不等式,如果 A B , A B C , B C AB, ABC, BC AB,ABC,BC 都有定义,则
    r a n k ( A B ) + r a n k ( B C ) ≤ r a n k ( B ) + r a n k ( A B C ) rank(AB)+rank(BC) \le rank(B)+rank(ABC) rank(AB)+rank(BC)rank(B)+rank(ABC)

  • Subadditivity:
    r a n k ( A + B ) ≤ r a n k ( A ) + r a n k ( B ) rank(A+B) \le rank(A)+rank(B) rank(A+B)rank(A)+rank(B)
    A A A B B B 拥有相同维度。作为一个结论,一个秩为 k k k 的矩阵可以被写成 k k k 个秩为1的矩阵的和,但是不能更少。

  • 矩阵的秩加上矩阵的零度等于矩阵的列数(rank-nullity theorem)

  • 如果 A A A 是一个在实数域上的矩阵,那么 A A A 的秩和 A A A 对应的 Gram 矩阵(度量矩阵)的秩相等。因此,对于实数阵,有
    r a n k ( A T A ) = r a n k ( A A T ) = r a n k ( A ) = r a n k ( A T ) rank(A^{T}A) = rank(AA^{T})=rank(A)=rank(A^{T}) rank(ATA)=rank(AAT)=rank(A)=rank(AT)
    这个可以通过证明他们的零空间(null spaces)相等来说明。Gram矩阵的零空间是由
    A T A x = 0 ⃗ A^{T}A\bold{x} = \vec{0} ATAx=0
    中的向量 x \bold{x} x 构成。

  • 如果 A A A 是一个在复数域上的矩阵,而且 A ‾ \overline A A表示 A A A 的共轭(complex conjugate),而且 A ∗ A^{*} A 表示共轭转置,则
    r a n k ( A ) = r a n k ( A ‾ ) = r a n k ( A T ) = r a n k ( A ∗ ) = r a n k ( A ∗ A ) = r a n k ( A A ∗ ) rank(A) = rank(\overline A)=rank(A^{T})=rank(A^*)=rank(A^*A)=rank(AA^*) rank(A)=rank(A)=rank(AT)=rank(A)=rank(AA)=rank(AA)

附录

Steinitz exchange 引理

如果 U = { u 1 , … , u m } U = \{u_1,\dots,u_m\} U={u1,,um} 是一个含有 m m m 个线性无关向量的集合,它在向量空间 V V V 中。而且 W = { w 1 , … , w n } W = \{w_1,\dots,w_n\} W={w1,,wn} 张成 V V V ,则:

  1. m ≤ n m \le n mn

  2. 存在一个集合 W ′ ⊂ W W^{'} \subset W WW ∣ W ′ ∣ = n − m |W^{'}|=n-m W=nm, s.t. U ∪ W ′ U\cup W^{'} UW 张成 V V V

参考文献

  1. 维基百科Rank (linear algebra)
  2. 王玉富.矩阵秩的不同定义及其比较[J].湖北民族学院学报(自然科学版),2011,29(03):264-267.
  • 5
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

培之

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值