将 ‘2分钟平均风向’ 的角度值映射到了16个方位之一

一、需求分析

如题

二、程序设计

这些方位从北开始,顺时针排列,每个方位之间的角度为22.5度。这种细分有助于更精确地描述风的方向,特别是在气象观测和预报中。

三、完整代码

import pandas as pd

# First, let's read the newly uploaded Excel file to see its structure and content.
file_path_new = '/mnt/data/test.xlsx'
data_new = pd.read_excel(file_path_new)

# Display the first few rows of the dataframe to understand its structure
data_new.head()

# The data structure is the same as the previously uploaded file. Now we will convert the angles
# in the '2分钟平均风向' column to the corresponding 16 compass directions.

# Define a function to convert wind direction angle to one of the 16 compass directions
def angle_to_direction(angle):
    if 348.75 <= angle or angle < 11.25:
        return 'N'
    elif 11.25 <= angle < 33.75:
        return 'NNE'
    elif 33.75 <= angle < 56.25:
        return 'NE'
    elif 56.25 <= angle < 78.75:
        return 'ENE'
    elif 78.75 <= angle < 101.25:
        return 'E'
    elif 101.25 <= angle < 123.75:
        return 'ESE'
    elif 123.75 <= angle < 146.25:
        return 'SE'
    elif 146.25 <= angle < 168.75:
        return 'SSE'
    elif 168.75 <= angle < 191.25:
        return 'S'
    elif 191.25 <= angle < 213.75:
        return 'SSW'
    elif 213.75 <= angle < 236.25:
        return 'SW'
    elif 236.25 <= angle < 258.75:
        return 'WSW'
    elif 258.75 <= angle < 281.25:
        return 'W'
    elif 281.25 <= angle < 303.75:
        return 'WNW'
    elif 303.75 <= angle < 326.25:
        return 'NW'
    elif 326.25 <= angle < 348.75:
        return 'NNW'

# Apply the function to the '2分钟平均风向' column to create a new 'Direction' column
data_new['Direction'] = data_new['2分钟平均风向'].apply(angle_to_direction)

# Display the dataframe with the new 'Direction' column
data_new.head()

四、结果

转换完成,现在新的数据帧 data_new 包含了一个名为 ‘Direction’ 的新列,它将 ‘2分钟平均风向’ 的角度值映射到了16个方位之一。以下是转换后的前几行数据:

### Matlab 绘制风向图的方法 绘制风向图通常可以通过 `windrose` 函数或者自定义函数实现。以下是几种常见的方法及其对应的代码示例。 #### 方法一:使用内置的 `rose()` 函数 虽然 `rose()` 的功能较为基础,但它可以快速生成简单的频率分布图。需要注意的是,默认情况下其坐标方向可能不符合常规习惯,因此需要手动调整角度[^3]。 ```matlab % 示例数据 directions = randi([0, 360], 1, 100); % 风向随机数 (度) figure; rose(deg2rad(directions), 16); % 将角度换为弧度并指定分组数量 title('Wind Direction Rose Plot'); set(gca, 'ThetaZeroLocation', 'North', 'ThetaDirection', 'clockwise'); % 调整坐标轴方向 ``` --- #### 方法二:使用第三方工具箱中的 `windrose` 函数 如果希望获得更复杂的风玫瑰图,则可以借助 MATLAB 中的一些扩展包或工具箱。这些工具箱提供了更多选项来定制图表样式[^2]。 ```matlab function windRoseExample() % 数据准备 directions = randi([0, 360], 1, 100); speeds = rand(1, 100) * 10; % 计算风速等级 bins = [0, 2, 4, 6, Inf]; speedBins = discretize(speeds, bins); % 初始化计数矩阵 countMatrix = zeros(length(bins)-1, length(unique(mod(directions, 360)))); % 填充计数矩阵 for i = 1:length(directions) dirIdx = mod(round(directions(i)/22.5)+1, 16)+1; % 方位角映射到16个扇区之一 spdIdx = find(speedBins(i) == (1:(length(bins)-1)), 1); if ~isempty(spdIdx) countMatrix(spdIdx, dirIdx) = countMatrix(spdIdx, dirIdx) + 1; end end % 使用 m_windrose 或其他类似函数绘制 hFig = figure; subplot(1, 2, 1); bar(countMatrix(:)); title('Speed Distribution'); subplot(1, 2, 2); polarhistogram(deg2rad((0:22.5:337.5)+11.25), sum(countMatrix)', 'BinWidth', deg2rad(22.5)); set(gca, 'ThetaZeroLocation', 'N', 'ThetaDir', 'cw'); end ``` 上述代码通过将风向和风速分类统计后,在极坐标上展示结果。 --- #### 方法三:基于 `polarplot` 自定义绘图 对于更高精度的需求,可以直接利用 `polarplot` 来构建个性化的风向图[^4]。 ```matlab theta = linspace(0, 2*pi, 18); % 定义角度范围 r = abs(sin(2*theta).*cos(2*theta)); % 构造半径值作为示例 figure; polarplot(theta, r, '-o', 'MarkerFaceColor', 'red', 'LineWidth', 2); title('Custom Polar Wind Direction Diagram'); grid on; ``` 此方式允许完全控制线条属性以及布局设计,适合科研级应用需求。 --- ### 注意事项 - 如果涉及地理信息系统(GIS),可考虑结合 Mapping Toolbox 提供的功能如 `m_track`, `m_ellipse` 等辅助完成复杂场景下的可视化任务[^1]。 - 对于大规模数据分析项目而言,建议优先选用成熟的开源库而非单纯依赖原生命令集以提升效率与效果质量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值