OpenCV CUDA模块中矩阵操作------矩阵元素求和

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

在OpenCV的CUDA模块中,矩阵元素求和类函数主要用于计算矩阵元素的总和、绝对值之和以及平方和。这些操作对于图像处理中的特征提取、质量评估等任务非常有用。

主要函数

矩阵所有元素的绝对值之和函数:absSum

原型

Scalar cv::cuda::absSum
(
	InputArray src,
	InputArray mask=noArray()
)

描述

返回矩阵所有元素的绝对值之和。

参数
  • src: 输入矩阵(通常是cv::cuda::GpuMat)。
  • mask: 可选掩码,指定哪些元素参与计算,默认为无掩码。
返回值

返回一个Scalar类型的对象,包含每个通道的绝对值之和。

矩阵所有元素的绝对值之和函数:calcAbsSum

原型
void cv::cuda::calcAbsSum
(
	InputArray src,
	OutputArray dst,
	InputArray mask=noArray(), 
	Stream& stream=Stream::Null()
)
描述

同cv::cuda::absSum,但结果存储在一个输出数组中。

参数
  • src: 输入矩阵。
  • dst: 输出标量,存储计算结果。
  • mask: 可选掩码。
  • stream: CUDA流用于异步执行(可选)。

计算所有元素的平方和函数sqrSum

原型
Scalar cv::cuda::sqrSum
(
	InputArray src,
	InputArray mask=noArray()
)

描述

返回矩阵所有元素的平方和。

参数

  • src: 输入矩阵。
  • mask: 可选掩码。
返回值

返回一个Scalar类型的对象,包含每个通道的平方和。

计算所有元素的平方和函数calcSqrSum

原型
void cv::cuda::calcSqrSum
(
	InputArray src, 
	OutputArray dst, 
	InputArray mask=noArray(), 
	Stream& stream=Stream::Null()
)
描述

同cv::cuda::sqrSum,但结果存储在一个输出数组中。

参数
  • src: 输入矩阵。
  • dst: 输出标量,存储计算结果。
  • mask: 可选掩码。
  • stream: CUDA流用于异步执行(可选)。

计算矩阵所有元素的总和函数sum

原型
Scalar cv::cuda::sum
(
	InputArray src, 
	InputArray mask=noArray()
)
描述

返回矩阵所有元素的总和。

参数
  • src: 输入矩阵。
  • mask: 可选掩码。
返回值

返回一个Scalar类型的对象,包含每个通道的总和。

计算矩阵所有元素的总和函数calcSum

原型
void cv::cuda::calcSum
(
	InputArray src, 
	OutputArray dst, 
	InputArray mask=noArray(), 
	Stream& stream=Stream::Null()
)
描述

同cv::cuda::sum,但结果存储在一个输出数组中。

参数

  • src: 输入矩阵。
  • dst: 输出标量,存储计算结果。
  • mask: 可选掩码。
  • stream: CUDA流用于异步执行(可选)。

代码示例

#include <iostream>
#include <opencv2/cudaarithm.hpp>
#include <opencv2/opencv.hpp>

int main()
{
    // 创建一个测试矩阵(4x4浮点型)
    cv::Mat h_mat = ( cv::Mat_< float >( 4, 4 ) << 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16 );

    // 将矩阵上传到GPU
    cv::cuda::GpuMat d_mat;
    d_mat.upload( h_mat );

    // 计算绝对值之和
    cv::Scalar abs_sum = cv::cuda::absSum( d_mat );
    std::cout << "Absolute sum: " << abs_sum[ 0 ] << "\n";

    // 计算平方和
    cv::Scalar sqr_sum = cv::cuda::sqrSum( d_mat );
    std::cout << "Squared sum: " << sqr_sum[ 0 ] << "\n";

    // 计算总和
    cv::Scalar total_sum = cv::cuda::sum( d_mat );
    std::cout << "Total sum: " << total_sum[ 0 ] << "\n";

    // 使用 calcAbsSum 和其他类似函数
    cv::cuda::GpuMat d_abs_sum, d_sqr_sum, d_total_sum;
    cv::cuda::calcAbsSum( d_mat, d_abs_sum );
    cv::cuda::calcSqrSum( d_mat, d_sqr_sum );
    cv::cuda::calcSum( d_mat, d_total_sum );

    // 下载结果回主机
    double host_abs_sum, host_sqr_sum, host_total_sum;
    d_abs_sum.download( cv::Mat( 1, 1, CV_64F, &host_abs_sum ) );
    d_sqr_sum.download( cv::Mat( 1, 1, CV_64F, &host_sqr_sum ) );
    d_total_sum.download( cv::Mat( 1, 1, CV_64F, &host_total_sum ) );

    std::cout << "Downloaded absolute sum: " << host_abs_sum << "\n";
    std::cout << "Downloaded squared sum: " << host_sqr_sum << "\n";
    std::cout << "Downloaded total sum: " << host_total_sum << "\n";

    return 0;
}

运行结果

Absolute sum: 136
Squared sum: 1496
Total sum: -8
Downloaded absolute sum: 136
Downloaded squared sum: 1496
Downloaded total sum: -8
### 关于 CUDA 和 Python 结合使用的示例 以下是几个典型的 CUDA 与 Python 结合使用的案例,涵盖了科学计算、图像处理以及深度学习等领域。 #### 使用 Numba 进行 CUDA 编程 Numba 是一种 JIT(即时编译)工具,可以加速 Python 函数的执行速度,并支持 CUDA 并行编程。下面是一个简单的矩阵加法示例: ```python from numba import cuda import numpy as np @cuda.jit def add_matrix(a, b, c): row, col = cuda.grid(2) if row < c.shape[0] and col < c.shape[1]: c[row, col] = a[row, col] + b[row, col] n = 4 a = np.ones((n, n), dtype=np.float32) b = np.eye(n, dtype=np.float32) c = np.empty_like(a) threads_per_block = (16, 16) blocks_per_grid_x = int(np.ceil(a.shape[0] / threads_per_block[0])) blocks_per_grid_y = int(np.ceil(a.shape[1] / threads_per_block[1])) blocks_per_grid = (blocks_per_grid_x, blocks_per_grid_y) add_matrix[blocks_per_grid, threads_per_block](a, b, c) print(c) ``` 上述代码通过 `numba.cuda` 实现了一个基于 GPU 的矩阵相加操作[^5]。 --- #### 利用 PyTorch 在 GPU 上运行张量运算 PyTorch 支持无缝切换 CPU/GPU 设备进行张量运算。以下是如何将张量移动到 GPU 并打印其设备信息的一个简单例子: ```python import torch if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') tensor_a = torch.tensor([1., 2.], device=device) print(tensor_a.device) # 输出 'cuda:0' 如果有可用的 GPU ``` 这段代码展示了如何检测是否有可用的 GPU,并将张量分配给该设备[^2]。 --- #### 基于 CuPy 的高性能数组计算 CuPy 是 NumPy 的 GPU 加速版本,提供了几乎完全兼容的 API 接口。以下是一段用于生成随机数并求和的例子: ```python import cupy as cp array_size = 10_000_000 random_array = cp.random.rand(array_size).astype(cp.float32) sum_result = random_array.sum() print(f'Sum of array on GPU is {float(sum_result)}') ``` 这里使用了 CuPy 来完成大规模数据上的快速数值计算[^6]。 --- #### 绘制 Mandelbrot 集或 Julia 集 Mandelbrot 集是一种经典的分形图形,在科学研究中有广泛应用。借助 CUDA 技术可以在短时间内渲染高分辨率的分形图。下面是部分伪代码框架: ```python import pycuda.autoinit import pycuda.driver as drv from pycuda.compiler import SourceModule import numpy as np mod = SourceModule(""" __global__ void mandel_kernel(float *output, float xmin, float xmax, float ymin, float ymax, int width, int height){ // Kernel implementation omitted here. } """) mandel_kern = mod.get_function("mandel_kernel") width, height = 800, 600 output = np.zeros(width*height, dtype=np.float32) xmin, xmax = -2.0, 1.0 ymin, ymax = -1.5, 1.5 mandel_kern(drv.Out(output), np.float32(xmin), np.float32(xmax), np.float32(ymin), np.float32(ymax), np.int32(width), np.int32(height), block=(16, 16, 1), grid=(int(width/16), int(height/16))) ``` 此程序片段实现了绘制 Mandelbrot 图像的核心逻辑[^1]。 --- #### OpenCV 库验证及其基本功能演示 如果需要在项目中集成计算机视觉组件,则可以通过如下方式确认 OpenCV 是否正常工作: ```python import cv2 image_path = './example.jpg' img = cv2.imread(image_path) cv2.imshow('Image', img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 当导入 `cv2` 后无错误提示时即表明安装成功[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

村北头的码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值