06数据分析 - 预测性分析

本文详细介绍了预测性分析中的关键概念,包括分类算法(如决策树、随机森林、KNN和神经网络)、聚类方法(如K-means和多层次聚类)、关联分析的步骤及常用算法(如APriori和FP-Tree),以及离群点检测的各种策略,如基于统计和邻近度的方法。
摘要由CSDN通过智能技术生成

预测性分析

分类

  1. 决策树算法
    计算步骤:
    选择对象的一个特征,并根据这一特征对训练集进行分类
    计算某特征分类后分类结果的混乱程度 (使用基尼系数,系数越小越接近根结点)
    在这里插入图片描述

     以混乱程度最低为原则,确定最佳节点
     删除不必要的节点
     生成模型进行预测	
    
  2. 随机森林算法

  3. KNN-最近邻分类算法

  4. 神经网络算法

聚类

仅依据数据中发现的描述对象的特征,将数据进行分组,其目标是,组内的对象相互间是相似的,面不同组之间的对象是不同的

  1. K-means
    是以最小误差函数的值最小为目标,按照预设的分类数量,采用距离作为相似性的评价指标,认为两个对象的距离越近,其相似度越大
    常用计算距离方式:
    在这里插入图片描述
    在这里插入图片描述
    1. K-中心点
    2. 多层次聚类
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值