函数曲线长度的计算方法

有些情况下,我们需要知道曲线上两个点之间在曲线上的测地距离。例如,在下图的二次函数曲线中,我们想知道从点(2,4)沿着曲线到点(8,64)要走的路程。

对此,我们可以将对应的函数区间划分为多个小的区间,每个小区间上两个端点之间的函数曲线长度可以用两个端点之间欧氏距离来代替,我们要求的图中两个点之间的曲线长度,就可以近似为划分的小区间端点之间欧氏距离之和。而当我们划分的小区间有无穷多个的时候,二者相等。所以,这个问题可以用定积分来进行求解。

如下图所示,图中蓝色曲线是函数曲线,红色线段是用来近似函数曲线的线段。

则红色线段的长度\hat{L}可以近似为

\hat{L}=\sqrt{(dx)^2+(dy)^2}=\sqrt{(dx)^2+(dx\cdot f'(x))^2}=\sqrt{1+(f'(x))^2}\cdot dx

所以曲线的长度L可以表示为

L=\int_{a}^{b}\sqrt{1+(f'(x))^2}dx

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值