上采样之最近邻插值、双线性插值

本文介绍了图像缩放中两种常见的上采样方法:最近邻插值和双线性插值。最近邻插值简单但可能导致图像灰度不连续,出现锯齿;双线性插值通过两次线性插值计算,得到更平滑的结果,但计算量相对较大。这两种方法是图像处理中的基础技术,用于提高或降低图像分辨率。
摘要由CSDN通过智能技术生成

上采样之最近邻插值、双线性插值

一、最近邻插值

在这里插入图片描述

  • 设i+u, j+v(i, j为正整数, u, v为大于零小于1的小数,下同)为待求象素坐标,则待求象素灰度的值 f(i+u, j+v)。
  • 如果(i+u, j+v)落在A区,即u<0.5, v<0.5,则将左上角象素的灰度值赋给待求象素,同理,落在B区则赋予右上角的象素灰度值,落在C区则赋予左下角象素的灰度值,落在D区则赋予右下角象素的灰度值。
  • 最邻近元法计算量较小,但可能会造成插值生成的图像灰度上的不连续,在灰度变化的地方可能出现明显的锯齿状。

二、双线性插值

先讲一下线性插值:已知数据 (x0, y0) 与 (x1, y1),要计算 [x0, x1] 区间内某一位置 x 在直线上的y值
在这里插入图片描述
在这里插入图片描述
双线性插值就是在两个方向上进行线性插值:
在这里插入图片描述
双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值。如图所示。

假如我们想得到未知函数 f 在点 P = (x, y) 的值,假设我们已知函数 f 在 Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四个点的值。首先在 x 方向进行线性插值,得到:
在这里插入图片描述
在这里插入图片描述
然后在 y 方向进行线性插值,得到:
在这里插入图片描述
综合起来就是双线性插值最后的结果:

在这里插入图片描述
参考:https://zhuanlan.zhihu.com/p/45863015

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值