高等数学笔记-苏德矿
第十章 曲线积分和曲面积分
第一节 第一类曲线积分
第一类曲线积分也称数量值函数的曲线积分。
一、第一类曲线积分的概念
问题:怎样求一段曲线弧状的质线的质量?
01 解决问题前的基本概念
02 由问题引入积分的定义
问题:若在曲线 Γ A B \Gamma_{AB} ΓAB 上点 P P P 的密度为 μ = f ( P ) \mu=f(P) μ=f(P) 连续,求 Γ A B \Gamma_{AB} ΓAB 的质量 M M M 。
(1) 分割:
相应地把曲线分成 n n n 个弧段 M i − 1 M i ⌢ \overset{\LARGE{\frown}}{M_{i-1}M_{i}} Mi−1Mi⌢,它的弧片记为 Δ s i \Delta s_i Δsi, i = 1 , 2 , ⋯ , n i=1,2,\cdots,n i=1,2,⋯,n, λ = max 1 ⩽ i ⩽ n Δ s i \lambda=\max \limits_{1 \leqslant i \leqslant n} \Delta s_{i} λ=1⩽i⩽nmaxΔsi 。
(2) 取近似:
∀ P i ∈ M i − 1 M i ⌢ \forall\ P_i\in\overset{\LARGE{\frown}}{M_{i-1}M_{i}} ∀ Pi∈Mi−1Mi⌢, Δ M i ≈ f ( P i ) Δ s i \Delta M_i\approx f(P_i)\Delta s_i ΔMi≈f(Pi)Δsi,, i = 1 , 2 , ⋯ , n i=1,2,\cdots,n i=1,2,⋯,n 。
(3) 作和:
M = ∑ i = 1 n Δ M i ≈ ∑ i = 1 n f ( P i ) Δ s i M=\sum\limits_{i=1}^{n}\Delta M_i\approx\sum\limits_{i=1}^{n} f(P_i)\Delta s_i M=i=1∑nΔMi≈i=1∑nf(Pi)Δsi
(4) 取极限:
lim λ → 0 ∑ i = 1 n f ( P i ) Δ S i = M \lim \limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} f(P_i)\Delta S_i=M λ→0limi=1∑nf(Pi)ΔSi=M
03 抽离物理背景的数学准备
去掉物理背景,取代密度 μ = f ( P ) \mu=f(P) μ=f(P) 为定义在曲线 Γ A B \Gamma_{AB} ΓAB 上的有界函数 f ( P ) f(P) f(P) 。
定义所加的条件本质上是保证该和式极限存在且唯一。
04 给出第一类曲线积分的定义
设 f ( P ) f(P) f(P) 在曲线 Γ A B \Gamma_{AB} ΓAB 上有定义且有界,若 lim λ → 0 ∑ i = 1 n f ( P i ) Δ S i \lim \limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} f(P_i)\Delta S_i λ→0limi=1∑nf(Pi)ΔSi 极限存在且唯一,
该极限值称为 f ( P ) f(P) f(P) 在曲线 Γ A B \Gamma_{AB} ΓAB 上的第一类曲线积分,又称数量值函数曲线积分。
记作 ∫ Γ A B f ( P ) d s \int_{\Gamma_{AB}}f(P)ds ∫ΓABf(P)ds,即 ∫ Γ A B f ( P ) d s = lim λ → 0 ∑ i = 1 n f ( P i ) Δ S i \int_{\Gamma_{AB}}f(P)ds=\lim \limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} f(P_i)\Delta S_i ∫ΓABf(P)ds=λ→0limi=1∑nf(Pi)ΔSi 。否则,称 f ( P ) f(P) f(P) 在曲线 Γ A B \Gamma_{AB} ΓAB 不可积。
极限存在且唯一的含义:
不论分点的插入方法或者 P i P_i Pi 趋于哪一点,得到的和式极限值都存在,并且等于同一个值。
二、第一类曲线积分的定理和性质
01 第一类曲线积分的意义
(1) 几何意义
设 C C C 是 x y x y xy 平面上曲线, S S S 是以 C C C 为准线,母线垂直 x y x y xy 平面的柱面,
柱面高度为 f ( x , y ) f(x, y) f(x,y) ,求 x y x y xy 平面以上这部分柱面 S S S 的面积
结论: A = ∫ C f ( x , y ) d s A=\int \limits_{C} f(x, y) d s A=C∫f(x,y)ds (曲线积分的几何意义)
(2) 物理意义
若 ∫ Γ A B f ( P ) d s \int_{\Gamma_{AB}}f(P)ds ∫ΓABf(P)ds 存在且 f ( P ) ⩾ 0 f(P)\geqslant0 f(P)⩾0,则 ∫ Γ A B f ( P ) d s \int_{\Gamma_{AB}}f(P)ds ∫ΓABf(P)ds 表示密度 μ = f ( P ) \mu=f(P) μ=f(P) 曲线段 Γ A B \Gamma_{AB} ΓAB 的质量 M M M 。
02 第一类曲线积分的性质
第一类曲线具有二重积分的所有性质。
(1) 对 1 1 1 的积分等于该段弧长的长度:若 f ( P ) ≡ 1 f(P)\equiv1 f(P)≡1, ∫ Γ A B 1 d s = ∫ Γ A B 1 d s = S \int _{\Gamma_{AB}}1ds=\int _{\Gamma_{AB}}1ds=S ∫ΓAB1ds=∫ΓAB1ds=S
(2) 与曲线方向无关: ∫ Γ A B f ( x , y ) d s = ∫ Γ B A f ( x , y ) d s \displaystyle{ \int_{\Gamma_{AB}} f(x, y) d s=\int_{\Gamma_{BA}} f(x, y) d s }% ∫ΓABf(x,y)ds=∫ΓBAf(x,y)ds
(3) 线性: ∫ Γ A B [ α f ( x , y ) + β g ( x , y ) ] d s = α ∫ Γ A B f ( x , y ) d s + β ∫ Γ A B g ( x , y ) d s \displaystyle{ \int_{\Gamma_{AB}}[\alpha f(x, y)+\beta g(x, y)] d s=\alpha \int_{\Gamma_{AB}} f(x, y) d s+\beta \int_{\Gamma_{AB}} g(x, y) d s }% ∫ΓAB[αf(x,y)+βg(x,y)]ds=α∫ΓABf(x,y)ds+β∫ΓABg(x,y)ds
(4) 可加性:设曲线段
Γ
A
C
_{\Gamma_{AC}}
ΓAC 与
Γ
C
B
_{\Gamma_{CB}}
ΓCB 首尾相接成曲线
Γ
A
B
\Gamma_{AB}
ΓAB
∫
Γ
A
B
f
(
x
,
y
)
d
s
=
∫
Γ
A
C
f
(
x
,
y
)
d
s
+
∫
C
B
f
(
x
,
y
)
d
s
\int _{\Gamma_{AB}}f(x, y) d s=\int_{\Gamma_{AC}} f(x, y) d s+\int_{CB} f(x, y) d s
∫ΓABf(x,y)ds=∫ΓACf(x,y)ds+∫CBf(x,y)ds
(5) 中值定理:设函数
f
f
f 在光滑曲线段
C
C
C 上连续,则存在
(
ξ
,
η
)
∈
C
(\xi, \eta) \in C
(ξ,η)∈C,使得
∫
C
f
(
x
,
y
)
d
s
=
f
(
ξ
,
η
)
⋅
s
c
(
S
c
为
曲
线
段
C
的
长
度
)
\int \limits_{C} f(x, y) d s=f(\xi, \eta) \cdot s_{c}\quad( S_{c} 为曲线段 C 的长度)
C∫f(x,y)ds=f(ξ,η)⋅sc(Sc为曲线段C的长度)
03 可积的必要条件
定理:若 f ( P ) f(P) f(P) 在光滑曲线 Γ A B \Gamma_{AB} ΓAB 上连续,则 f ( P ) f(P) f(P) 在 Γ A B \Gamma_{AB} ΓAB 可积,反之不成立。
三、第一类曲线积分的分类
01 平面第一类曲线积分
若 Γ A B ⊂ R 2 \Gamma_{AB}\subset\mathrm{R}^2 ΓAB⊂R2, P ( x , y ) ∈ Γ A B P(x,y)\in\Gamma_{AB} P(x,y)∈ΓAB,
∫ Γ A B f ( P ) d s = ∫ Γ A B f ( x , y ) d s \int_{\Gamma_{AB}}f(P)ds=\int_{\Gamma_{AB}}f(x,y)ds ∫ΓABf(P)ds=∫ΓABf(x,y)ds 称为平面第一类曲线积分。
02 空间第一类曲线积分
若 Γ A B ⊂ R 3 \Gamma_{AB}\subset\mathrm{R}^3 ΓAB⊂R3, P ( x , y , z ) ∈ Γ A B P(x,y,z)\in\Gamma_{AB} P(x,y,z)∈ΓAB,
∫ Γ A B f ( P ) d s = ∫ Γ A B f ( x , y , z ) d s \int_{\Gamma_{AB}}f(P)ds=\int_{\Gamma_{AB}}f(x,y,z)ds ∫ΓABf(P)ds=∫ΓABf(x,y,z)ds 称为空间第一类曲线积分。
第一类曲线积分可以求平面和空间的曲线弧长。
四、第一类曲线积分的计算
01 数量值函数曲线积分的计算
参数方程可以表示曲线方程更一般的形式。
设 Γ A B ⊂ R 2 \Gamma_{AB}\subset\mathrm{R}^2 ΓAB⊂R2,且 Γ A B : { x = x ( t ) y = y ( t ) α ⩽ t ⩽ β \Gamma_{AB}: \begin{cases}\ x=x(t) \\ \ y=y(t)\end{cases}\quad\alpha\leqslant t\leqslant\beta ΓAB:{ x=x(t) y=y(t)α⩽t⩽β (微元法)
计算 ∫ Γ A B f ( x , y ) d s \int_{\Gamma_{AB}}f(x,y)ds ∫ΓABf(x,y)ds .
设 Q = ∫ Γ A B f ( x , y ) d s Q=\int_{\Gamma_{AB}}f(x,y)ds Q=∫ΓABf(x,y)ds ⇔ \Leftrightarrow ⇔ d Q = f ( x , y ) d s , ( x , y ) ∈ Γ A B dQ=f(x,y)ds,(x,y)\in\Gamma_{AB} dQ=f(x,y)ds,(x,y)∈ΓAB
利用定积分中曲线弧长的微分公式 d s = x ′ 2 ( t ) + y ′ 2 ( t ) d t ds=\sqrt{x'^2(t)+y'^2(t)}\ dt ds=x′2(t)+y′2(t) dt .
要求 x ′ ( t ) , y ′ ( t ) x'(t),y'(t) x′(t),y′(t) 连续不同时为0(光滑曲线)
从而 d Q = f ( x ( t ) , y ( t ) ) x ′ 2 ( t ) + y ′ 2 ( t ) d t , t ∈ [ α , β ] dQ=f(x(t),y(t))\sqrt{x'^2(t)+y'^2(t)}\ dt\ , \ t\in[\alpha,\beta] dQ=f(x(t),y(t))x′2(t)+y′2(t) dt , t∈[α,β] 。
所以,
Q
=
∫
Γ
A
B
f
(
x
,
y
)
d
s
Q=\int_{\Gamma_{AB}}f(x,y)ds
Q=∫ΓABf(x,y)ds,且积分中
d
s
d s
ds 是弧长,取正值,故右端积分限应
α
⩽
β
\alpha \leqslant \beta
α⩽β 。
Q
=
∫
Γ
A
B
f
(
x
,
y
)
d
s
=
Q
=
∫
α
β
f
(
x
(
t
)
,
y
(
t
)
)
x
′
2
(
t
)
+
y
′
2
(
t
)
d
t
Q=\int_{\Gamma_{AB}}f(x,y)ds=Q=\int_{\alpha}^{\beta}f(x(t),y(t))\sqrt{x'^2(t)+y'^2(t)}dt
Q=∫ΓABf(x,y)ds=Q=∫αβf(x(t),y(t))x′2(t)+y′2(t)dt
02 几种第一类曲线积分的计算
(1) 几种第一类平面曲线积分
① Γ A B : y = φ ( x ) , x ∈ [ a , b ] \Gamma_{AB}:y=\varphi(x),x\in[a,b] ΓAB:y=φ(x),x∈[a,b] (x=x) 特殊的参数方程
φ
’
(
x
)
\varphi’(x)
φ’(x) 连续(以后默认)
∫
Γ
A
B
f
(
x
,
y
)
d
s
=
∫
a
b
f
(
x
,
φ
(
x
)
)
1
+
φ
′
2
(
x
)
d
x
\int_{\Gamma_{AB}}f(x,y)ds=\int_{a}^{b}f(x,\varphi(x))\sqrt{1+\varphi'^2(x)}\ dx
∫ΓABf(x,y)ds=∫abf(x,φ(x))1+φ′2(x) dx
②
Γ
A
B
:
x
=
ψ
(
y
)
,
y
∈
[
c
,
d
]
,
ψ
’
(
x
)
\Gamma_{AB}:x=\psi(y)\ , \ y\in[c,d]\ , \ \psi’(x)
ΓAB:x=ψ(y) , y∈[c,d] , ψ’(x) 连续 (
y
=
y
y=y
y=y ) 特殊的参数方程
∫
Γ
A
B
f
(
x
,
y
)
d
s
=
∫
c
d
f
(
ψ
(
y
)
,
y
)
1
+
ψ
′
2
(
y
)
d
y
\int_{\Gamma_{AB}}f(x,y)ds=\int_{c}^{d}f(\psi(y),y)\sqrt{1+\psi'^2(y)}\ dy
∫ΓABf(x,y)ds=∫cdf(ψ(y),y)1+ψ′2(y) dy
③
Γ
A
B
:
r
=
r
(
θ
)
,
θ
∈
[
α
,
β
]
,
r
′
(
θ
)
\Gamma_{AB}:r=r(\theta)\ , \ \theta\in[\alpha,\beta]\ , \ r'(\theta)
ΓAB:r=r(θ) , θ∈[α,β] , r′(θ) 连续
⇒
{
x
=
r
(
θ
)
cos
θ
y
=
r
(
θ
)
sin
θ
θ
∈
[
α
,
β
]
\Rightarrow\ \begin{cases}\ x=r(\theta)\cos\theta \\ \ y=r(\theta)\sin\theta\end{cases}\quad\theta\in[\alpha,\beta]
⇒ { x=r(θ)cosθ y=r(θ)sinθθ∈[α,β] ,
x
′
2
(
θ
)
+
y
′
2
(
θ
)
=
r
2
(
θ
)
+
r
′
2
(
θ
)
x'^2(\theta)+y'^2(\theta)=r^2(\theta)+r'^2(\theta)
x′2(θ)+y′2(θ)=r2(θ)+r′2(θ) . 强行构造参数方程
∫
Γ
A
B
f
(
x
,
y
)
d
s
=
∫
α
β
f
(
r
(
θ
)
cos
θ
,
r
(
θ
)
sin
θ
)
r
2
(
θ
)
+
r
′
2
(
θ
)
d
θ
\int_{\Gamma_{AB}}f(x,y)ds=\int_{\alpha}^{\beta}f(r(\theta)\cos\theta,r(\theta)\sin\theta)\sqrt{r^2(\theta)+r'^2(\theta)}\ d\theta
∫ΓABf(x,y)ds=∫αβf(r(θ)cosθ,r(θ)sinθ)r2(θ)+r′2(θ) dθ
④
Γ
A
B
:
θ
=
θ
(
r
)
,
r
∈
[
a
,
b
]
,
θ
′
(
r
)
\Gamma_{AB}:\theta=\theta(r)\ , \ r\in[a,b]\ , \ \theta'(r)
ΓAB:θ=θ(r) , r∈[a,b] , θ′(r) 连续
⇒ { x = r cos θ ( r ) y = r sin θ ( r ) r ∈ [ a , b ] \Rightarrow\ \begin{cases}\ x=r\cos\theta(r) \\ \ y=r\sin\theta(r)\end{cases}\quad r\in[a,b] ⇒ { x=rcosθ(r) y=rsinθ(r)r∈[a,b]
不作统一形式的公式,具体题目具体分析
好的思路:转化为 r = r ( θ ) r=r(\theta) r=r(θ) 或者关于x,y的方程
(2) 第一类空间曲线积分
若
Γ
A
B
:
{
x
=
x
(
t
)
y
=
y
(
t
)
z
=
z
(
t
)
t
∈
[
α
,
β
]
\Gamma_{AB}:\ \begin{cases}\ x=x(t) \\ \ y=y(t) \\ \ z=z(t)\end{cases}\quad t\in[\alpha,\beta]
ΓAB: ⎩⎪⎨⎪⎧ x=x(t) y=y(t) z=z(t)t∈[α,β],则
∫
Γ
A
B
f
(
x
,
y
,
z
)
d
s
=
∫
α
β
f
(
x
(
t
)
,
y
(
t
)
,
z
(
t
)
)
x
′
2
(
t
)
+
y
′
2
(
t
)
+
z
′
2
(
t
)
d
t
\int_{\Gamma_{AB}}f(x,y,z)ds=\int_{\alpha}^{\beta}f(x(t),y(t),z(t))\sqrt{x'^2(t)+y'^2(t)+z'^2(t)}\ dt
∫ΓABf(x,y,z)ds=∫αβf(x(t),y(t),z(t))x′2(t)+y′2(t)+z′2(t) dt
重积分被积函数一般不能化简,因为它满足的是不等式,而曲线曲面积分经常可以化简,因为它满足的是等式。