高等数学笔记-苏德矿-第十章-曲线积分和曲面积分-第一节-第一类曲线积分

高等数学笔记-苏德矿

第十章 曲线积分和曲面积分

第一节 第一类曲线积分

第一类曲线积分也称数量值函数的曲线积分。

一、第一类曲线积分的概念

问题:怎样求一段曲线弧状的质线的质量?

在这里插入图片描述

01 解决问题前的基本概念

在这里插入图片描述

02 由问题引入积分的定义

问题:若在曲线 Γ A B \Gamma_{AB} ΓAB 上点 P P P 的密度为 μ = f ( P ) \mu=f(P) μ=f(P) 连续,求 Γ A B \Gamma_{AB} ΓAB 的质量 M M M

在这里插入图片描述

(1) 分割:

相应地把曲线分成 n n n 个弧段 M i − 1 M i ⌢ \overset{\LARGE{\frown}}{M_{i-1}M_{i}} Mi1Mi,它的弧片记为 Δ s i \Delta s_i Δsi i = 1 , 2 , ⋯   , n i=1,2,\cdots,n i=1,2,,n λ = max ⁡ 1 ⩽ i ⩽ n Δ s i \lambda=\max \limits_{1 \leqslant i \leqslant n} \Delta s_{i} λ=1inmaxΔsi

(2) 取近似:

∀   P i ∈ M i − 1 M i ⌢ \forall\ P_i\in\overset{\LARGE{\frown}}{M_{i-1}M_{i}}  PiMi1Mi Δ M i ≈ f ( P i ) Δ s i \Delta M_i\approx f(P_i)\Delta s_i ΔMif(Pi)Δsi,, i = 1 , 2 , ⋯   , n i=1,2,\cdots,n i=1,2,,n

(3) 作和:

M = ∑ i = 1 n Δ M i ≈ ∑ i = 1 n f ( P i ) Δ s i M=\sum\limits_{i=1}^{n}\Delta M_i\approx\sum\limits_{i=1}^{n} f(P_i)\Delta s_i M=i=1nΔMii=1nf(Pi)Δsi

(4) 取极限:

lim ⁡ λ → 0 ∑ i = 1 n f ( P i ) Δ S i = M \lim \limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} f(P_i)\Delta S_i=M λ0limi=1nf(Pi)ΔSi=M

03 抽离物理背景的数学准备

去掉物理背景,取代密度 μ = f ( P ) \mu=f(P) μ=f(P) 为定义在曲线 Γ A B \Gamma_{AB} ΓAB 上的有界函数 f ( P ) f(P) f(P)

定义所加的条件本质上是保证该和式极限存在且唯一。

04 给出第一类曲线积分的定义

f ( P ) f(P) f(P) 在曲线 Γ A B \Gamma_{AB} ΓAB 上有定义且有界,若 lim ⁡ λ → 0 ∑ i = 1 n f ( P i ) Δ S i \lim \limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} f(P_i)\Delta S_i λ0limi=1nf(Pi)ΔSi 极限存在且唯一,

该极限值称为 f ( P ) f(P) f(P) 在曲线 Γ A B \Gamma_{AB} ΓAB 上的第一类曲线积分,又称数量值函数曲线积分

记作 ∫ Γ A B f ( P ) d s \int_{\Gamma_{AB}}f(P)ds ΓABf(P)ds,即 ∫ Γ A B f ( P ) d s = lim ⁡ λ → 0 ∑ i = 1 n f ( P i ) Δ S i \int_{\Gamma_{AB}}f(P)ds=\lim \limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} f(P_i)\Delta S_i ΓABf(P)ds=λ0limi=1nf(Pi)ΔSi 。否则,称 f ( P ) f(P) f(P) 在曲线 Γ A B \Gamma_{AB} ΓAB 不可积。

极限存在且唯一的含义

不论分点的插入方法或者 P i P_i Pi 趋于哪一点,得到的和式极限值都存在,并且等于同一个值。

二、第一类曲线积分的定理和性质

01 第一类曲线积分的意义

(1) 几何意义

在这里插入图片描述

C C C x y x y xy 平面上曲线, S S S 是以 C C C 为准线,母线垂直 x y x y xy 平面的柱面,

柱面高度为 f ( x , y ) f(x, y) f(x,y) ,求 x y x y xy 平面以上这部分柱面 S S S 的面积

结论: A = ∫ C f ( x , y ) d s A=\int \limits_{C} f(x, y) d s A=Cf(x,y)ds (曲线积分的几何意义

(2) 物理意义

∫ Γ A B f ( P ) d s \int_{\Gamma_{AB}}f(P)ds ΓABf(P)ds 存在且 f ( P ) ⩾ 0 f(P)\geqslant0 f(P)0,则 ∫ Γ A B f ( P ) d s \int_{\Gamma_{AB}}f(P)ds ΓABf(P)ds 表示密度 μ = f ( P ) \mu=f(P) μ=f(P) 曲线段 Γ A B \Gamma_{AB} ΓAB 的质量 M M M

02 第一类曲线积分的性质

第一类曲线具有二重积分的所有性质。

(1) 对 1 1 1 的积分等于该段弧长的长度:若 f ( P ) ≡ 1 f(P)\equiv1 f(P)1 ∫ Γ A B 1 d s = ∫ Γ A B 1 d s = S \int _{\Gamma_{AB}}1ds=\int _{\Gamma_{AB}}1ds=S ΓAB1ds=ΓAB1ds=S

(2) 与曲线方向无关: ∫ Γ A B f ( x , y ) d s = ∫ Γ B A f ( x , y ) d s \displaystyle{ \int_{\Gamma_{AB}} f(x, y) d s=\int_{\Gamma_{BA}} f(x, y) d s }% ΓABf(x,y)ds=ΓBAf(x,y)ds

(3) 线性: ∫ Γ A B [ α f ( x , y ) + β g ( x , y ) ] d s = α ∫ Γ A B f ( x , y ) d s + β ∫ Γ A B g ( x , y ) d s \displaystyle{ \int_{\Gamma_{AB}}[\alpha f(x, y)+\beta g(x, y)] d s=\alpha \int_{\Gamma_{AB}} f(x, y) d s+\beta \int_{\Gamma_{AB}} g(x, y) d s }% ΓAB[αf(x,y)+βg(x,y)]ds=αΓABf(x,y)ds+βΓABg(x,y)ds

(4) 可加性:设曲线段 Γ A C _{\Gamma_{AC}} ΓAC Γ C B _{\Gamma_{CB}} ΓCB 首尾相接成曲线 Γ A B \Gamma_{AB} ΓAB
∫ Γ A B f ( x , y ) d s = ∫ Γ A C f ( x , y ) d s + ∫ C B f ( x , y ) d s \int _{\Gamma_{AB}}f(x, y) d s=\int_{\Gamma_{AC}} f(x, y) d s+\int_{CB} f(x, y) d s ΓABf(x,y)ds=ΓACf(x,y)ds+CBf(x,y)ds
(5) 中值定理:设函数 f f f 在光滑曲线段 C C C 上连续,则存在 ( ξ , η ) ∈ C (\xi, \eta) \in C (ξ,η)C,使得
∫ C f ( x , y ) d s = f ( ξ , η ) ⋅ s c ( S c 为 曲 线 段 C 的 长 度 ) \int \limits_{C} f(x, y) d s=f(\xi, \eta) \cdot s_{c}\quad( S_{c} 为曲线段 C 的长度) Cf(x,y)ds=f(ξ,η)sc(Sc线C)

03 可积的必要条件

定理:若 f ( P ) f(P) f(P) 在光滑曲线 Γ A B \Gamma_{AB} ΓAB 上连续,则 f ( P ) f(P) f(P) Γ A B \Gamma_{AB} ΓAB 可积,反之不成立。

三、第一类曲线积分的分类

01 平面第一类曲线积分

Γ A B ⊂ R 2 \Gamma_{AB}\subset\mathrm{R}^2 ΓABR2 P ( x , y ) ∈ Γ A B P(x,y)\in\Gamma_{AB} P(x,y)ΓAB

∫ Γ A B f ( P ) d s = ∫ Γ A B f ( x , y ) d s \int_{\Gamma_{AB}}f(P)ds=\int_{\Gamma_{AB}}f(x,y)ds ΓABf(P)ds=ΓABf(x,y)ds 称为平面第一类曲线积分。

02 空间第一类曲线积分

Γ A B ⊂ R 3 \Gamma_{AB}\subset\mathrm{R}^3 ΓABR3 P ( x , y , z ) ∈ Γ A B P(x,y,z)\in\Gamma_{AB} P(x,y,z)ΓAB

∫ Γ A B f ( P ) d s = ∫ Γ A B f ( x , y , z ) d s \int_{\Gamma_{AB}}f(P)ds=\int_{\Gamma_{AB}}f(x,y,z)ds ΓABf(P)ds=ΓABf(x,y,z)ds 称为空间第一类曲线积分。

第一类曲线积分可以求平面和空间的曲线弧长。

四、第一类曲线积分的计算

01 数量值函数曲线积分的计算

参数方程可以表示曲线方程更一般的形式。

Γ A B ⊂ R 2 \Gamma_{AB}\subset\mathrm{R}^2 ΓABR2,且 Γ A B : {   x = x ( t )   y = y ( t ) α ⩽ t ⩽ β \Gamma_{AB}: \begin{cases}\ x=x(t) \\ \ y=y(t)\end{cases}\quad\alpha\leqslant t\leqslant\beta ΓAB:{ x=x(t) y=y(t)αtβ (微元法)

计算 ∫ Γ A B f ( x , y ) d s \int_{\Gamma_{AB}}f(x,y)ds ΓABf(x,y)ds .

Q = ∫ Γ A B f ( x , y ) d s Q=\int_{\Gamma_{AB}}f(x,y)ds Q=ΓABf(x,y)ds ⇔ \Leftrightarrow d Q = f ( x , y ) d s , ( x , y ) ∈ Γ A B dQ=f(x,y)ds,(x,y)\in\Gamma_{AB} dQ=f(x,y)ds,(x,y)ΓAB

利用定积分中曲线弧长的微分公式 d s = x ′ 2 ( t ) + y ′ 2 ( t )   d t ds=\sqrt{x'^2(t)+y'^2(t)}\ dt ds=x2(t)+y2(t)  dt .

要求 x ′ ( t ) , y ′ ( t ) x'(t),y'(t) x(t),y(t) 连续不同时为0(光滑曲线)

从而 d Q = f ( x ( t ) , y ( t ) ) x ′ 2 ( t ) + y ′ 2 ( t )   d t   ,   t ∈ [ α , β ] dQ=f(x(t),y(t))\sqrt{x'^2(t)+y'^2(t)}\ dt\ , \ t\in[\alpha,\beta] dQ=f(x(t),y(t))x2(t)+y2(t)  dt , t[α,β]

所以, Q = ∫ Γ A B f ( x , y ) d s Q=\int_{\Gamma_{AB}}f(x,y)ds Q=ΓABf(x,y)ds,且积分中 d s d s ds 是弧长,取正值,故右端积分限应 α ⩽ β \alpha \leqslant \beta αβ
Q = ∫ Γ A B f ( x , y ) d s = Q = ∫ α β f ( x ( t ) , y ( t ) ) x ′ 2 ( t ) + y ′ 2 ( t ) d t Q=\int_{\Gamma_{AB}}f(x,y)ds=Q=\int_{\alpha}^{\beta}f(x(t),y(t))\sqrt{x'^2(t)+y'^2(t)}dt Q=ΓABf(x,y)ds=Q=αβf(x(t),y(t))x2(t)+y2(t) dt

02 几种第一类曲线积分的计算

(1) 几种第一类平面曲线积分

Γ A B : y = φ ( x ) , x ∈ [ a , b ] \Gamma_{AB}:y=\varphi(x),x\in[a,b] ΓAB:y=φ(x),x[a,b] (x=x) 特殊的参数方程

φ ’ ( x ) \varphi’(x) φ(x) 连续(以后默认)
∫ Γ A B f ( x , y ) d s = ∫ a b f ( x , φ ( x ) ) 1 + φ ′ 2 ( x )   d x \int_{\Gamma_{AB}}f(x,y)ds=\int_{a}^{b}f(x,\varphi(x))\sqrt{1+\varphi'^2(x)}\ dx ΓABf(x,y)ds=abf(x,φ(x))1+φ2(x)  dx
Γ A B : x = ψ ( y )   ,   y ∈ [ c , d ]   ,   ψ ’ ( x ) \Gamma_{AB}:x=\psi(y)\ , \ y\in[c,d]\ , \ \psi’(x) ΓAB:x=ψ(y) , y[c,d] , ψ(x) 连续 ( y = y y=y y=y ) 特殊的参数方程
∫ Γ A B f ( x , y ) d s = ∫ c d f ( ψ ( y ) , y ) 1 + ψ ′ 2 ( y )   d y \int_{\Gamma_{AB}}f(x,y)ds=\int_{c}^{d}f(\psi(y),y)\sqrt{1+\psi'^2(y)}\ dy ΓABf(x,y)ds=cdf(ψ(y),y)1+ψ2(y)  dy
Γ A B : r = r ( θ )   ,   θ ∈ [ α , β ]   ,   r ′ ( θ ) \Gamma_{AB}:r=r(\theta)\ , \ \theta\in[\alpha,\beta]\ , \ r'(\theta) ΓAB:r=r(θ) , θ[α,β] , r(θ) 连续

⇒   {   x = r ( θ ) cos ⁡ θ   y = r ( θ ) sin ⁡ θ θ ∈ [ α , β ] \Rightarrow\ \begin{cases}\ x=r(\theta)\cos\theta \\ \ y=r(\theta)\sin\theta\end{cases}\quad\theta\in[\alpha,\beta]  { x=r(θ)cosθ y=r(θ)sinθθ[α,β] x ′ 2 ( θ ) + y ′ 2 ( θ ) = r 2 ( θ ) + r ′ 2 ( θ ) x'^2(\theta)+y'^2(\theta)=r^2(\theta)+r'^2(\theta) x2(θ)+y2(θ)=r2(θ)+r2(θ) . 强行构造参数方程
∫ Γ A B f ( x , y ) d s = ∫ α β f ( r ( θ ) cos ⁡ θ , r ( θ ) sin ⁡ θ ) r 2 ( θ ) + r ′ 2 ( θ )   d θ \int_{\Gamma_{AB}}f(x,y)ds=\int_{\alpha}^{\beta}f(r(\theta)\cos\theta,r(\theta)\sin\theta)\sqrt{r^2(\theta)+r'^2(\theta)}\ d\theta ΓABf(x,y)ds=αβf(r(θ)cosθ,r(θ)sinθ)r2(θ)+r2(θ)  dθ
Γ A B : θ = θ ( r )   ,   r ∈ [ a , b ]   ,   θ ′ ( r ) \Gamma_{AB}:\theta=\theta(r)\ , \ r\in[a,b]\ , \ \theta'(r) ΓAB:θ=θ(r) , r[a,b] , θ(r) 连续

⇒   {   x = r cos ⁡ θ ( r )   y = r sin ⁡ θ ( r ) r ∈ [ a , b ] \Rightarrow\ \begin{cases}\ x=r\cos\theta(r) \\ \ y=r\sin\theta(r)\end{cases}\quad r\in[a,b]  { x=rcosθ(r) y=rsinθ(r)r[a,b]

不作统一形式的公式,具体题目具体分析

好的思路:转化为 r = r ( θ ) r=r(\theta) r=r(θ) 或者关于x,y的方程

(2) 第一类空间曲线积分

Γ A B :   {   x = x ( t )   y = y ( t )   z = z ( t ) t ∈ [ α , β ] \Gamma_{AB}:\ \begin{cases}\ x=x(t) \\ \ y=y(t) \\ \ z=z(t)\end{cases}\quad t\in[\alpha,\beta] ΓAB:  x=x(t) y=y(t) z=z(t)t[α,β],则
∫ Γ A B f ( x , y , z ) d s = ∫ α β f ( x ( t ) , y ( t ) , z ( t ) ) x ′ 2 ( t ) + y ′ 2 ( t ) + z ′ 2 ( t )   d t \int_{\Gamma_{AB}}f(x,y,z)ds=\int_{\alpha}^{\beta}f(x(t),y(t),z(t))\sqrt{x'^2(t)+y'^2(t)+z'^2(t)}\ dt ΓABf(x,y,z)ds=αβf(x(t),y(t),z(t))x2(t)+y2(t)+z2(t)  dt

重积分被积函数一般不能化简,因为它满足的是不等式,而曲线曲面积分经常可以化简,因为它满足的是等式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值