COMPETITIVE HEBBIAN LEARNING AND NEURAL GAS
一些信息:
一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。
induced Delaunay triangulation" has been shown to optimally preserve topology in a very general sense (Martinetz, 1993).
诱导的德罗拉三角法被证明可以优化地保存拓扑信息。
-
如何让结构可以直接实现逆向映射,这就引出了拓扑学习的定义。目前(1990s)有两种方法可以重建这种结构:CML+NG
- NG方法,向量量化程序。
- NG方法核心:
For each input signal x adapt the k nearest centers whereby k is decreasing from a large initial to a small final value.
对于每个输入信号x适应k个最近的中心,其中k从大的初始值减小到小的最终值。
大的初始值k导致大部分中心点位置调整(adapt)(朝向输入信号运动)。然后减小调整的范围k,直到最后只有每个输入信号的最近中心点才调整。调整强度是类似衰减时间表的基础。(强度值随时间而减小?)为了实现参数衰减,必须预先定义NG方法的自适应步骤的总数。*缺点