Learning Without Forgetting 笔记及实现

LWF是一种经典的持续学习方法,它通过知识蒸馏防止灾难性遗忘。文章介绍了LWF的基本原理,与其他方法的比较,算法流程,并提供了基于PyTorch的简单实现。LWF在不使用旧任务数据的情况下,通过旧网络指导的输出来平衡新任务的训练,以在新旧任务中取得良好性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Learning Without Forgetting

LWF简介

LWF是结合知识蒸馏(KD)避免灾难性遗忘的经典持续学习方法。本质上是通过旧网络指导的输出对在新任务训练的网络参数进行平衡,从而得到在新旧任务网络上都表现较好的性能。

方法对比

compare
a.从头开始训练
b.微调:在旧任务的网络基础上以较小的学习率学习新任务 另一种意义上的initialization?
c.联合训练:使用所有任务的数据一起训练
d.特征提取:将旧任务的参数固定作为特征提取器,添加新的层训练新任务

LWF算法流程

algorithm
θ s \theta_s θs为在old task上pretrained网络CNN的共享参数
θ o \theta_o θo为每个old task的特定参数(可理解为网络的i最后的classifier head)
( X n , Y n ) (X_n,Y_n) (Xn,Yn) new task的数据

初始化:
1.将新数据 ( X n , Y n ) (X_n,Y_n) (Xn,Yn) 输入在旧任务pretrained网络中得到一组respond Y o Y_o Yo
2.将new task对应的classifier head参数随机初始化(加快训练的常见手段)

训练:
Y o ^ \hat{Y_o} Yo^ 为待训练网络CNN 对应old task的输出,最开始 θ o \theta_o θo= θ o ^ \hat{\theta_o} θo^ , θ s \theta_s θs= θ s ^ \hat{\theta_s} θs^
Y n ^ \hat{Y_n} Yn^ 为待训练网络对应new task的输出,最开始 θ n \theta_n θn= θ n ^ \hat{\theta_n} θn^ , θ s \theta_s θs= θ s ^ \hat{\theta_s} θs^
优化目标为
θ s ∗ , θ o ∗ , θ n ∗ ← argmin ⁡ θ ^ s , θ ^ o , θ ^ n ( λ o L o l d ( Y o , Y ^ o ) + L n e w ( Y n , Y ^ n ) + R ( θ ^ s , θ ^ o , θ ^ n ) ) \theta_{s}^{*}, \theta_{o}^{*}, \theta_{n}^{*} \leftarrow \underset{\hat{\theta}_{s}, \hat{\theta}_{o}, \hat{\theta}_{n}}{\operatorname{argmin}}\left(\lambda_{o} \mathcal{L}_{o l d}\left(Y_{o}, \hat{Y}_{o}\right)+\mathcal{L}_{n e w}\left(Y_{n}, \hat{Y}_{n}\right)+\mathcal{R}\left(\hat{\theta}_{s}, \hat{\theta}_{o}, \hat{\theta}_{n}\right)\right) θs,θo,θ

learning without forgetting是指在进行连续学习任务时,保持之前所学习知识的不被遗忘。为了实现learning without forgetting,可以使用PyTorch这一深度学习框架。 在PyTorch中,可以使用增量学习(incremental learning)的方法。具体步骤如下: 1. 定义初始模型:首先,定义一个初始模型,用于解决第一个学习任务。可以使用PyTorch中的Module类来创建模型,并选择适当的网络结构。 2. 学习第一个任务:使用第一个任务的数据集对模型进行训练。可以使用PyTorch提供的DataLoader类来加载数据集,使用优化器(如Adam或SGD)和损失函数(如交叉熵损失)对模型进行训练。 3. 保存模型参数:在完成第一个任务的训练后,将模型的参数保存起来。可以使用torch.save()函数将参数保存到磁盘上的文件中。 4. 准备新任务:准备新的数据集和标签,用于学习新的任务。可以使用相同的网络结构或者更改网络结构,根据新的任务要求进行适当的调整。 5. 加载之前的模型参数:在开始新的任务训练之前,使用torch.load()函数加载之前保存的模型参数。 6. 设置学习率:由于新的任务可能与之前的任务有不同的难度或重要性,可以设置不同的学习率来适应新任务的特点。可以使用PyTorch中的scheduler类或手动调整学习率。 7. 学习新任务:使用新的数据集对模型进行更新训练。可以使用先前定义的优化器和损失函数,使用torch.nn.Module的train()方法进行训练。 通过以上步骤,可以在PyTorch中实现learning without forgetting。重要的是保存和加载已训练模型参数,并根据新任务的要求进行适当的调整。同时,可以根据需要设置学习率等超参数,以更好地适应不同任务的特点。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值