1. AI 赋能
1.1 金融行业
我们知道财报发布,投行的工作人员是很紧张的,他有一系例流程要做,首先要读财报,读取比如销售额,利润率,红利分配,等等一系列关键数据,或者KPI。然后填入模型,模型告诉未来股票趋势,然后他要买入,卖出。整个过程,至少5分钟,甚至10分钟或更长。
现在的问题时,财报季来的时候,有时候1天要几十个财报,整理完所有财报需要一个团队。如果用AI人工智能,读取关键字,输入模型,产生买入卖出的指令就是几秒钟,而且机器可以并行处理,了解历史记录,历史突发事件,季节模式,未来趋势,结合外部数据。
AI工具还可以将数据,事件归档,产生分析报告。
芬兰的alphasense就是做这件事的,后被美国公司收购。
1.2 通讯领域
1.2.1 视频会议
在通讯领域,各个企业国际化,特别是中国出海是热潮,视频会议牵涉到多个国家的人,视频会议中不同国籍的人语言怎么交流呢?AI能帮助即时翻译,然后还能写会议摘要。
1.2.2 5G网络
5G Americas的白皮书探讨了生成式AI如何改变分组核心网和BSS/OSS系统,推动电信行业的效率提升、创新发展和用户体验优化。
在核心网络中:
生成式AI通过生成合成数据来填补信息空白或丰富有限信息的数据集,从而增强数据处理和分析能力。这减少了对大规模数据收集的需求,降低了通信成本,并在处理敏感数据时提高了隐私保护。在网络数据分析功能(NWDAF)中,生成式AI可以创建网络元素的数字孪生体,模拟如流量增加等场景,并预测其对延迟、吞吐量和能耗等关键指标的影响,同时强调可持续性。
在BSS/OSS系统中:
生成式AI正在彻底改变支撑电信网络的运营和业务支持系统。这些系统负责处理客户关系、计费、订单、网络库存和运营。
传统上依赖SQL查询的系统,现在正在借助AI和高级分析手段向更深层次的操作洞察发展。
生成式AI与分组核心网和BSS/OSS系统的融合标志着移动网络的一大飞跃,实现了更智能的运营、更优化的用户体验和更强大的安全保障。
1.3 软件工程领域
1.3.1 自动生成代码,有人介入
代码帮助,这已经是程序员的常规使用工具。有时候,能帮助一次性生成大量代码。在可控的状态下,一般高级程序员会切分模块,把一个大问题切分成很多小问题,然后在小问题上写好注释,就是具体步骤。代码帮助工具能够很快生成代码,并给出单元测试。
1.3.2 自动生成程序
有时候,有的工具,比如iMagica,在一定步骤后,是自动生成所有代码,并安装部署。有点像照相机中的傻瓜机。
1.3.3 运维领域
1、基础监控与告警处理
· 现状:人工需盯屏、筛选告警、初步判断优先级。
· AI替代:通过异常检测算法(如时序数据分析)自动过滤噪音告警,直接推送根因定位建议。
2、简单故障修复与操作执行
· 现状:人工执行脚本重启服务、清理日志、扩容节点等。
· AI替代:基于历史操作记录和规则库,自动触发修复动作(需人类审核)。
3、容量规划与资源调度
· 现状:依赖经验预测业务流量,手动调整资源配额。
· AI替代:结合历史数据与业务趋势预测,动态优化资源分配(如弹性扩缩容)。
4、文档维护与知识库更新
· 现状:人工整理故障处理记录、编写运维手册。
· AI替代:自动从工单、聊天记录中提取信息,生成标准化文档并同步到知识库。
1.4 安全领域
安全领域在AI应用中,也是热火朝天。 计算机视觉已经在安全领域大显身手。但AI能够针对不同企业,不同规范作出预警。比如配电室,各种线路繁多,怎样预警颜色错配。不同企业的都有不同的颜色定义。用一般性的计算机视觉难以达到理想效果。
船舶和建筑行业有很多案例,可以使用AI来对安全问题产生预警。比如安全帽是否穿戴,鞋子是否符合规格,管道铺设有没有合规,线路铺设有没有错配。。。
1.5 办公
在办公领域,报价单,年终总结消耗很大人力物力。AI 能迅速帮助管理人员,市场人员产生需要的草稿报价文档,标书等等。
对于市场部而言,一般谁先递交报价,赢得合同的可能性就越大,因为客户有先入为主的概念。所以,怎样快速生成准确的报价单就是很重要了。一般而言,大模型生成报价单的草稿或初版,然后由人工校读。 AI 可以结合公司本身的报价系统,物流系统,采购系统生成报价,同时,确保报价符合各项条件,比如不以牺牲利润率的情况下,报出最低价。
1.6 医疗领域
在医疗领域,医生利用大模型通过照片识别癌症,有的识别率能在94%。
医药学家还能用大模型来创造新药。大家知道,传统意义上,一款新药的研发周期是一,二十年,费用在几十亿至几百亿之间。 AI 大医疗领域正大显身手。 提高人们的生活质量。
1.7 教育领域
网上很多短视频,说到父母教孩子功课,会火冒三丈,脾气失去控制。AI 能够很有耐心教导孩子功课,能举一反三,针对孩子的易错点,反复教导,这就是个性化教育。
有的孩子到了高年级,不如英语,高中数学,父母也无能为力,而对于AI教育,这都是轻舟驾熟。
大模型还能根据教课的主题,标题,要点自动生成教案的初稿。 这样,老师可以大大节省备课的时间。
1.8 法律领域
法律,法规是很严肃认真的。法规的查找往往牵涉到很大精力,但大模型对查找相关法规易如反掌。
其次,对比法规的版本不同,原先律师要花大量时间和精力,对照版本,现在大模型可以直接对版本的不同地方提出总结。
1.9 先进制造业领域
先进制造业可能是提供生产线的设备商,机床制造商,工业机器人。。。,我们以工业机器人做例子,老师傅将10几年的安装调试,维修排障经验成文,录入企业专家知识库,当一位新手一个人面对任务时,大模型就能成为他的帮手,需要什么,就可以通过大模型查询。
1.10 数字营销
关注B2B数字营销……HubSpot工作流程通过新的“询问Breeze”操作变得更智能了。这个由AI驱动的工作流程步骤可以让您向Breeze提问,并在后续操作(如设置属性值或确定工作流程分支)中使用AI生成的回复。这意味着什么?
AI现在可以自动分析、分类和丰富工作流程中的数据。想象一下应用场景……
。将职位名称与职位等级和部门相匹配
。识别语言并更新首选语言属性
。分析客户情绪以进行潜在客户评分
。根据领域和行业自动对公司进行分类
1.11 BXaaS 业务执行即服务
大型语言模型能运营公司吗?答案比你想象的更近
······
一篇新的研究论文探讨了大型语言模型(LLMs)从决策到战略执行,在企业中担任各种角色的潜力。
对于许多人来说,人工智能(AI)运营公司的想法听起来仍像科幻小说。但对于我们这些正在构建以AI为本的组织的人来说,这已经成为现实。
AI担任高管——大型语言模型做出战略和运营决策。
多智能体系统——由AI驱动的角色像公司团队一样协同工作。
人机混合组织——专业人员融入AI管理的工作流程。
这不仅仅是关于自动化——而是关于重新定义企业结构本身。BXaaS(业务执行即服务)是对这一演变的理解:
。Ⅴ AI首席执行官(CEO)、首席运营官(COO)、首席财务官(CFO)——引导企业的智能体。
。以结果为导向的执行——AI优化决策以实现结果。
。Ⅴ 超越人类极限的可扩展性——没有组织架构瓶颈,只有执行。
研究正赶上从业者的实践步伐。未来不仅仅是AI辅助企业——而是AI运营企业。
1.12 AI 和 云原生
革新网络自动化:未来属于人工智能原生
云原生网络发展迅速,而Nephio + GenAl正在引领自主网络自动化成为现实。真正的突破是什么?是从手动配置转向由人工智能驱动的、自我优化的网络。
- 人工智能驱动的编排简化了复杂的网络部署。
- 自愈自动化减少了停机时间和人工干预。
- GenAl增强了决策能力,使网络更加智能和适应性强。
- 未来不仅仅是自动化,而是人工智能原生执行,网络不仅能够响应,还能主动优化自身。
1.13 人工智能的阴暗面
看到了很多人工智能的应用场景,那么我们有什么需要担忧的一面呢?
代理型人工智能(Agentic AI)的阴暗面——我们准备好了吗?代理型人工智能正在改变企业的运营方式。人工智能驱动的实体如今能够自主分析、决策和执行,其规模远超人类所能达到的水平。但高度的自主性也带来了新的风险。
开放网络应用安全项目(OWASP)关于代理型人工智能威胁与缓解措施的最新报告强调了新兴的安全风险:
· 越狱攻击——人工智能模型被篡改以绕过道德约束。
· 过度依赖人工智能——企业盲目信任人工智能的决策,而不进行验证。
· 自动化漏洞利用——恶意的人工智能代理无需人为干预即可攻击系统。
作为构建以人工智能为本的组织的一员,多代理人工智能系统(Multi agent)不仅仅是一种自动化工具,而是一种新的企业基础设施。这一转变要求在代理层面进行治理,确保人工智能的行为与业务目标、道德规范和最佳安全实践保持一致。
关键问题:我们如何构建既强大又可控的代理型人工智能?