AI+传统业务的应用场景分类

引言

24年是人工智能AI发展迅速的一年,AI在各个领域的应用也变得越来越多。然而,对于没有AI基础的初学者来说,面对层出不穷的AI应用,还是会感到困惑,甚至焦虑:AI究竟能做什么?我的需求能否通过AI来满足? 大家都用AI来干什么了?为了回答这些疑问,我们将基于AI的核心能力,对其通用应用场景进行分类,帮助用户能够结构化的理解AI如何帮助用户实现需求。

一、信息检索

AI信息检索是利用人工智能技术从海量数据中快速、准确地找到并提取用户所需信息的过程。AI信息检索通过理解用户意图和语义关联,能够提供更智能、精准的搜索结果,而传统搜索引擎主要依靠关键词匹配和链接分析。

二、内容创作

AI内容创作是利用人工智能技术自动生成文字、代码、图像、音频和视频等内容的过程。与传统人工创作相比,AI创作具有更快的生产速度和更低的成本,可以快速批量产出内容。但AI创作往往缺乏人类创作者的独特见解和情感深度,因此目前主要用于辅助创作,需要与人工创作相结合。

三、语言理解

传统的语言识别技术,仅仅能够生硬、粗略的转换为相应的文本信息。而AI语言理解能够“有感情”的分析文本和语音中的含义、听懂方言、俚语、理解情感,从而模仿人类行为实现人机交互。

四、翻译与转换

AI翻译能够更好地理解和生成语言,相较于传统工具如谷歌翻译更有“人味”,同时AI翻译甚至能够自动纠偏,在翻译的同时给你纠正原文中可能存在的错别字、格式错误等情况,用户能够获得更加准确和自然流畅的翻译结果。

与此同时,相比于传统的翻译工具,AI翻译的成本更低。

五、分析预测

AI驱动下的数据预测与分析,相比于传统的数据分析,最大的优势在于节约了大量代码工程。

另一方面,从数据收集、数据清洗、数据分析、动态处理等多环节都可以借助于AI实现。AI对于处理多样化的数据类型也非常擅长,并且拥有处理大规模和多样化数据的能力。

我们可以借助AI,分析预测企业经营、信用评估、风险评估、能源消耗预测、教育质量评估、气候变化分析等。

六、多模态处理

利用AI对图像、音频和其他信号进行识别和处理。

  • 图像识别,检测和分类图像内容。

  • 语音识别,将语音转换为文本。

  • 音频和视频内容分析,提取有价值的信息。

示例:

  • 人脸识别:用于解锁设备或安全验证。

  • 语音转文字:方便会议记录和整理。

  • 医学影像分析:辅助医生诊断疾病。

七、推荐系统

利用AI根据用户行为和偏好,提供个性化的内容和体验。

  • 产品或内容推荐,提升用户满意度。

  • 个性化营销,针对性推广产品或服务。

  • 定制化的用户界面和设置。

示例:

  • 电商平台商品推荐:增加购买转化率。

  • 流媒体服务影片推荐:满足用户观看喜好。

  • 个性化学习平台:根据学生水平推荐课程。

八、流程自动化

利用AI自动执行重复性或复杂任务,提高效率和准确性。

  • 自动化数据处理,减少人工操作错误。

  • 工作流程优化,加速业务流程进展。

  • 自动监控和报警,实时发现并处理问题。

示例:

  • 机器人流程自动化(RPA):处理日常事务。

  • 智能排程系统:优化生产和配送流程。

  • 自动监控系统:实时检测设备故障。

总结

对于初学者而言,理解这些分类有助于认清自身需求:明确需要解决的问题或提升的领域。同时匹配AI功能:找到对应的AI能力,寻求合适的解决方案。

说到底,AI技术的发展就像是给我们每个人塞了一个”百宝箱”。了解这些分类,就是在学习如何打开这个”百宝箱”,发掘里面的宝藏。不管是在工作中提高效率,还是在生活中增添乐趣,AI都能成为我们的得力助手。

推荐

人工智能大模型目前可选项非常之多,国内、国外都涌现出了一批头部AI大模型,广为人知的例如:

  • 国外

    • OpenAI的gpt系列(推荐)

    • Anthropi的claude系列

    • Google的gemini系列

    • X的grok系列

    • Meta的开源llama系列

    • 绘图模型Midjourney

  • 国内

    • deepseek系列(推荐)

    • 智谱清言的glm系列

    • 阿里的qwen系列

    • 百度的文心一言

国内平台相对很好注册,进入它们的官网借助开发文档接入即可;国外平台由于限制问题,普通用户基本没可能自行注册购买(需要翻墙 + 开海外信用卡)。

如果不想折腾,想即买即用,则推荐你购买聚合AI的API,在线自助下单,方便快捷。聚合AI官网整合了多款AI开源应用程序,也可用于开发。

API购买地址:https://one.mmwcy.cn

目前已支持上述所有厂家的人工智能大模型,支持开票,服务稳定,调用方便。

聚合AI的应用接入或开发接入请参考聚合AI官网。

聚合AI国内官网地址:https://juheai.vjjwz.cn/

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值